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ABSTRACT
The challenge of swift and reliable earthquake location prediction within earthquake early
warning (EEW) systems underscore the need for innovative solutions. Existing methods pro-
vide predictions, yet there is a clear demand for enhanced accuracy and expediency in the
process of resolving. The article intends in prediction of both magnitude of earthquakes and
the affected areas in a specific region, focusing on California, United States, by leveraging
historical data using neural networks (NNs). Neural networks outperform other algorithms
such as XGBoost, linear regression, random forest, gradient boosting and support vector
machine (SVM), in terms of high R2 score and low score of MAE and also mean squared
error (MSE). The derived results of R2 score, MSE and MAE are 0.1607, 0.1615 and 0.2951,
respectively. It seamlessly integrates geospatial visualization through Folium and GeoPandas.
These tools enhance the predictive model’s capabilities by generating dynamic maps
enriched with markers, each representing the anticipated impact of earthquakes. The user
interface facilitates interactive input, enabling users to input earthquake parameters for real-
time predictions. The resultant map not only showcases the predicted impact zone but also
provides valuable insights into the severity of seismic events. It stands as a testament to the
synergy between machine learning and geospatial visualization, offering a holistic solution
for earthquake prediction and geographical representation.
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1. Introduction

The article addresses the critical need for advanced
earthquake prediction and early warning systems,
recognizing the inherent threat that earthquakes
pose to communities worldwide. The primary object-
ive is to focus on the enhancement of accuracy and
speed at which the predictions of earthquake loca-
tion are performed within the framework of detect-
ing earthquakes at an early stage. This initiative
specifically focuses on predicting both the magni-
tude of earthquakes and the corresponding affected
areas, crucial for effective disaster mitigation.

Traditional approaches to earthquake prediction
have historically relied on seismic sensors and

historical data. However, this article leverages the

power of neural network (NN) model to significantly

improve the precision and adaptability of earthquake

detection and severity assessment. By incorporating

a diverse set of models under machine learning,

including XGBoost, linear regression, random forest,

gradient boosting and support vector machine

(SVM), the system gains the capability to capture lin-

ear and non-linear relationships, intricate patterns,

decision boundaries and relationships within com-

plex geospatial and seismic datasets. This holistic

approach results in more reliable predictions of both

the magnitude of seismic events and the potential

impact zones.
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Beyond the utilization of machine learning algo-
rithms, this article introduces an innovative solution
that seamlessly integrates geospatial visualization
through Folium and GeoPandas. This integration
enhances the accuracy of earthquake predictions by
providing a dynamic and interactive representation of
the data. The inclusion of geospatial visualization not
only improves the interpretability of the results but
also transforms the system into an interactive tool.
Users can engage in real-time input, obtaining imme-
diate insights into anticipated impact zones and fos-
tering a proactive approach to disaster preparedness.

The synergy between advanced predictive models
and geospatial visualization represents a comprehen-
sive paradigm for accurate and expeditious earth-
quake prediction and early warning systems. The
integration of machine learning not only refines pre-
dictive capabilities but also enables the system to
adapt to evolving patterns and complexities in seis-
mic data. By combining these advanced models with
interactive mapping, the project aims to address the
challenges associated with seismic event mitigation,
ultimately contributing to the development of more
resilient and informed communities.

This initiative stands at the intersection of
machine learning, geospatial visualization and earth-
quake magnitude prediction, offering a comprehen-
sive solution that transcends traditional methods.
The goal is to empower communities with timely
and accurate information, fostering a proactive
approach to earthquake preparedness and ensuring
the safety and resilience of societies facing the con-
stant threat of seismic events.

2. Literature survey

Saad et al. (2022)’s synthetic datasets compensate for
sparse station distribution, enabling effective training
despite data shortages in certain areas. Kong et al.
(2016)’s recorded seismic waveforms have potential
applications in creating rapid microseism maps,
assessing building impacts and studying shallow
earth structure and earthquake rupture kinematics.
Chin et al. (2020) discuss earthquake early warning
(EEW) systems in Taiwan, a highly seismic region.
Saad et al. (2021) algorithm’s speed and high accur-
acy lets it adapt to different geographical areas by
training it with earthquake data from those regions,
promising potential applications in earthquake moni-
toring and early warning systems. Umar et al. (2013)
suggest a community-based early warning system
using rainfall thresholds and recommends installing
rainfall gauges in groups of 10–20 houses around hills

to monitor and alert residents during heavy rains,
enhancing safety measures.

Maddaloni et al. (2013) explore the integration of
two seemingly unrelated technologies in seismic
engineering: semi-active (SA) control, aimed at miti-
gating seismic effects on structures and seismic early
warning (SEW). Sherki et al. (2015) introduce an EEW
system that combines sensor design and advanced
signal processing techniques. Cho et al. (2022) focus
on improving EEW systems’ accuracy, particularly in
the Korean Peninsula, to prevent missed alarms or
false alarms that may lead to casualties or economic
losses. Alphonsa and Ravi (2016) present the imple-
mentation of wireless sensor network (WSN) with
Internet of Things for early prediction of earthquake.
Suprijanto et al. (2013), introduce a method for
improving the accuracy of P-wave arrival time detec-
tion in seismic signals. Wu et al. (2015) address the
limitations of predicting earthquake early in handling
multiple concurrent earthquakes by proposing
Bayesian probabilistic approach.

Mousavi and Beroza (2020) introduce MagNet, an
NN inspired model is used to predict the magnitude
of earthquake directly from the waveform data at
each station. Zhang et al. (2020) provide rapid auto-
mated location estimates, without requiring velocity
models or human intervention. Al Amin et al. (2015),
address the longstanding challenge of early earth-
quake detection, offering a promising solution. Kwon
et al. (2020) discuss the implementation of a working
earthquake detection system in South Korea using
low-cost micro-electro-mechanical systems (MEMS)
sensors. Ohsumi (2013) addresses EEW limitations,
namely inaccurate estimation of magnitude and
intensities for earthquake during high risk events,
and suggests counter measures. Saad et al. (2017)
present a technique is efficient even under low
signal-to-noise ratio (SNR) conditions.

Kislov et al. (2012) present methods and algo-
rithms for real-time identification of waveform arriv-
als from local earthquakes amid high man-induced
noise levels for EEW. Mehrazarin et al. (2016) make
use of open source library to detect vibrations and
to translate them into seismograph. Pirenne et al.
(2014) focus on creating an integrated geo-hazard
alert system. Wu et al. (2007) discuss the phenom-
enon of satellite thermal infrared (TIR) anomalies
preceding earthquakes and proposes a mechanism
for interpreting these anomalies. Saad, Shalaby, et al.
(2017) present a novel approach for predicting the
earthquakes at an early stage by detecting the onset
of earthquakes. Chandrakant et al. (2012) introduce
an innovative approach to earthquake prediction
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through WSNs by using mobile biological sensors of
animals.

3. Proposed methodology

The existing methods show case that they provide
predictions, yet there is a clear demand for enhanced
accuracy and expediency in the process of resolving.
The article intends in prediction of both magnitude
of earthquakes and the affected areas in a specific
region, focusing on California, United States, by lever-
aging historical data using NNs. The application
implements a machine learning pipeline and outputs
results that include affected area calculation, magni-
tude prediction using machine learning models,
model evaluation and geospatial visualization.

3.1. Machine learning pipeline

The code implements a comprehensive machine
learning pipeline that includes data loading, prepro-
cessing, model training and evaluation. It covers a
variety of regression models, offering flexibility in
choosing the most suitable algorithm for earthquake
magnitude prediction. It seamlessly integrates geo-
spatial visualization through Folium and GeoPandas.
These tools enhance the predictive model’s capabil-
ities by generating dynamic maps enriched with
markers, each representing the anticipated impact of
earthquakes.

3.2. Earthquake magnitude prediction

The primary goal of the application is to predict
earthquake magnitudes using different regression

models. The code successfully trains XGBoost, linear
regression, random forest, gradient boosting and
SVM models for this purpose. The article aims at
integrating Folium and Geopandas with the above-
mentioned machine learning models. The process
aims at obtaining better accuracy with minimal error
rate in predicting the magnitude of earthquake.

3.3. Affected area calculation

The model calculates the affected area based on pre-
dicted magnitude and depth. This provides add-
itional insights in to the potential impact of
earthquakes, extending the application beyond mag-
nitude prediction. The basic machine learning pipe-
line architecture presented in Figure 1 is referenced
from Krishna Bhargavi et al. (2021) and is applied to
the present model in predicting the magnitude and
depth.

3.4. Linear regression

In the context of earthquake prediction, linear
regression aims to establish a linear equation
between seismic features (independent features) and
earthquake magnitude (dependent feature). The
model represents the relationship as a linear model
and tries to fit the best fitting line that has minimal
sum of squared difference between the observed
and predicted magnitudes. The algorithm iteratively
adjusts weights using gradient descent to reduce
the difference in magnitudes among the actual and
predicted values.

Figure 1. Machine learning pipeline for earthquake detection and prediction.
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3.5. Linear regression model

1. Load earthquake data from CSV file.
2. Earthquake data is divided into training and

testing datasets.
3. Initialize a linear regression model.

pred mag ¼ Icpt þ cof 1 � Ftr1 þ cof 2 � Ftr2

þ cof 3 � Ftr3 þ cof 4 � Ftr4 þ e

(1)

where
- pred_mag is the magnitude that is to be pre-
dicted

- Icpt indicates the intercept
- cof1, cof2, cof3, and cof4 are the coefficients for
features Ftr1, Ftr2, Ftr3 and Ftr4

- Ftr1, Ftr 2, Ftr 3 and Ftr 4 are the selected fea-
tures (latitude, longitude, depth and number
of stations) respectively.

- e is the error term.
4. Ordinary least squares (OLS) method is used to

train the training dataset and minimizes the
error that may be caused with sum of squares.

5. Predict the magnitude on the testing set, to
check how well the model fits.

6. Calculate R2 score, mean absolute error (MAE)
and mean squared error (MSE) are calculated
using the following formulae:

MSE ¼ ð1=nÞ�Rðtest mag–pred magÞ2 (2)

R2 ¼ 1 − ðR test mag − pred magð Þ2=
Rðtest mag − dtest magÞ2Þ

(3)

MAE ¼ ð1=nÞ�Rjpred mag − dtest magj (4)

where
� dtest mag is the mean of the target feature
test_mag.
- test_magis the actual magnitude.

3.6. Random forest

In this application, a Random Forest regressor is con-
structed by initializing the hyper parameters. The
trained random forest model is used to make predic-
tions on the test data set.

3.6.1. Random forest regression model
1. Hyper parameters for random forest regressor

are initialized.
Number of trees ¼ 100
Random seed ¼ 42

2. The constructed regressor is fitted using training
data.

y pred ¼ ð1=NÞ�ðtree:predictðX testÞÞ (5)

where
- X_test contains features, such as latitude, lon-
gitude, depth and number of stations.
- N is the number of trees initialized in the ran-
dom forest.

3. Predict the earthquake location on the test data
using the ensemble of decision trees.

4. Calculate the evaluation metrics R2 and MSE.

3.7. Support vector machine

In this application, SVMs are used for earthquake
magnitude classification based on the ‘Magnitude_
type’ column. Four SVM instances are initialized,
each corresponding to a different magnitude type
(‘ML’, ‘Mx’, ‘Md’ and others). The RBF kernel is used
for all SVM instances. Each instance of SVM is trained
using subsets of training data. Binary labels are gen-
erated for each SVM instance, indicating whether an
earthquake belongs to a specific magnitude type.
The fit method is used to train each SVM model on
its respective subset of the data. The code utilizes
SVMs to classify earthquake magnitude types based
on specific features. The SVMs are trained using sub-
sets of training data, and their decision boundaries
are visualized for better understanding.

3.7.1. Support vector machine model
1. Import necessary libraries.
2. Select a subset of the training data.
3. Create an SVM regressor with a radial basis func-

tion (RBF) kernel.
Decision Function:

fðzÞ ¼
X

ðm ¼ 1toNÞamymDðzm, zÞ þ r (6)

RBF Kernel Function:

KFðzm, zÞ ¼ eð−cjjzm - zjj2̂Þ (7)

Prediction for a New Input Vector:

pred mag ¼ sin
X

m ¼ 1toNð ÞamymD zm, znewð Þ þ r
� ��

(8)

where
−am represent Lagrange multipliers that are
associated with the support vectors.
−pred mag represents the class labels of the
training data.
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−zm represents the input features of the training
data.
- c is a parameter in the RBF kernel.

4. Train the SVM regressor on the subset or full
training data.

5. Evaluate the model on the test set.
6. Calculate the evaluation metrics R2 and MSE.

3.8. XGBoost

XGBoost is an optimized gradient boosting algorithm
that sequentially builds weak learners to create a
strong learner. The negative gradient from the loss
function is used to fit the weak learner. The predic-
tions are updated using shrinkage factor.

3.8.1. XGBoost model
1. Initialize an XGBoost regressor.
2. Fit the regressor to the training data using gra-

dient boosting.

y pred ¼ Rðtree:predictðX testÞÞ þ c�Rðl2 normÞ
(9)

where
- X_test contains features such as latitude, longi-
tude, depth and number of stations
- c is the regularization term.

3. Predict the target variable on the test data.
4. Calculate the evaluation metrics R2 and MSE.

3.9. Neural network

In this application, a NN is trained using scikit-learn’s
MLP Regressor on earthquake data. The NN uses fea-
tures like latitude, longitude, depth and the number
of stations to predict earthquake magnitudes. It is
evaluated on a test set, and various visualizations
are employed for analysis. Users can input specific
parameters to get real-time magnitude predictions
based on the trained NN model.

3.9.1. Neural network model
1. Import necessary libraries
2. Standardize the input features
3. Initialize the NN regressor
4. Fit the regressor to the training data Predict on

the testing set

5. Calculate the evaluation metrics R2 and MSE.

pred a1 ¼ activationðWeightFactor1 � Xpred1 þ r1Þ
(10)

pred a2 ¼ activationðWeightFactor2 � Xpred2 þ r2Þ
(11)

pred mag ¼ W out � a2 test þ b out (12)

where
- X_test contains features such as latitude, longi-
tude, depth and number of stations.
- c is the regularization term.

3.10. Gradient boosting

Gradient Boosting sequentially builds a series of
weak learners, each correcting errors of the previous
one. The negative gradient from the loss function is
used to fit the weak learner. The predictions are
updated using learning rate.

3.10.1. Gradient boosting model
1. Import necessary libraries.
2. Initialize Gradient Boosting regressor.

3.10.2. Iterative training

map function ¼argminh
X

¼ 1toNf gLðym, Final Map

fk − 1gðxmÞ þmap functionðxmÞÞ
(13)

Final MapðxÞ ¼ Final Map fk − 1gðxÞ
þ g � map functionðxÞ (14)

where

� xm : input features (latitude, longitude, depth and
no of stations).

� ym : true or observed output (magnitude).
� map functionðxÞ : function that maps input fea-

tures xm to a predicted output.

3.11. Final prediction

FðxÞ ¼ Final MapðxÞ ¼ R fm ¼ 1gf̂Mgg�h mðxÞ
(15)

1. Fit the regressor to the training data.
2. Predict on the testing set.
3. Calculate the evaluation metrics R2 and MSE.
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4. Results and discussion

R2, MAE and MSE and are compared among the
aforesaid methods using formulae given in
Equations (2), (3) and (4). The following table pro-
vides the comparison of these metrics among differ-
ent machine learning models. It can be clearly
understood from the table that NNs outperformed
the remaining machine learning model. The results

Figure 2. Comparison of mean absolute error among
machine learning models.

Figure 3. Comparison of mean absolute error among
machine learning models.

Figure 4. Comparison of mean absolute error among
machine learning models.

Figure 5. Importance of features.

Table 1. Comparison of metrics among machine learning
model.
Model
name R2

Mean absolute
error (MAE)

Mean squared
error (MSE)

Linear
regression

0.023513 0.322742 0.187941

SVM −2.627321 0.571287 0.698141
Random

forest
0.136024 0.298496 0.166287

Neural
network

0.160769 0.295104 0.161524

XGBoost 0.137525 0.300482 0.165998
Gradient

boosting
0.140008 0.296574 0.165520

Figure 6. Actual versus predicted magnitude.

Figure 7. Result of machine learning model.
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specified in Table 1 are obtained by executing the
different machine learning models for testing against
various metrics.

The following figures depict the comparison of met-
rics among the aforementioned algorithms and the vis-
ual representation is obtained from Matplotlib library
in Python. Figure 2 represents the MAE comparison
among the machine learning methods. SVM is identi-
fied to obtain more MAE when compared to other
algorithms. Random forest, NN, XGBoost and Gradient
Boosting obtained almost the same MAE score.

Figure 3 represents the MSE comparison among
the machine learning methods. It can be clearly
visualized that SVM model obtained more MSE value.
Other machine learning models NN, Random forest,
gradient boosting and XGBoost almost obtained
lesser error rate when compared to linear regression
and SVM models.

Figure 4 represents the MSE comparison among
the machine learning methods. The figure clearly
demonstrates that SVM obtained negative R2 score
and NN, Random forest, gradient boosting and
XGBoost obtained positive values. It clearly indicates
that these models outperform SVM and Linear
regression models.

Figure 5 represents the importance of features in
the NN model and Figure 6 represents the graph
among actual and predicted magnitude values.
Figures 7 and 8 are the depictions of the usage of
Folium and Geopandas packages of Python.

5. Conclusion

In conclusion, this article presents a comprehensive
solution for earthquake prediction and geospatial
visualization that intended in improving the accuracy

of prediction and also the precision in identification
of location within the earthquake early prediction sys-
tems. By leveraging historical data and employing
various machine learning models, the project focuses
on predicting both the magnitude of earth quakes
and the affected areas in California, United States. The
integration of geospatial visualization tools like Folium
and GeoPandas enhances the predictive model’s capa-
bilities, providing dynamic maps enriched with
markers that represent the anticipated impact of
earthquakes. The user interface allows for interactive
input, enabling users to input earthquake parameters
for real-time predictions. The resulting map not only
showcases the predicted impact zone but also offers
valuable insights into the severity of seismic events.
This article provides a holistic solution for earthquake
prediction and geographical representation using NNs
as it outperforms other algorithms such as XGBoost,
Linear Regression, Random Forest, Gradient Boosting
and SVM in terms of high R2 score and low score of
MAE and also MSE.
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