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Abstract: Gender Classification from facial images is an open 

research area with wide range of computer vision applications like 

security, biometrics and human computer interaction 

applications. In the proposed method the LL band image of facial 

image is obtained by using wavelet then on this image Fibonacci 

Weighted Neighborhood Central pixel Flood binary Matrix is 

computed and then shape features are evaluated. SVM method 

uses these shape features for gender classification. The proposed 

approach has been experimented on FG NET database. The 

experimental results has shown the more accuracy compared to 

with other existing methods. 

Keywords : Gender Classification, biometrics, Fibonacci 

Weighted Neighborhood Central pixel Flood binary,  FG NET  

I. INTRODUCTION 

Humans can easily identify gender of the persons by 

looking at face or facial images. The aim of automatic gender 

classification is to find the features from facial images. The 

progress of gender classification research has driven in many 

potential applications like access control systems in smart 

spaces, human-computer interaction (HCI), the security and 

surveillance industry, demographic research, commercial 

development, and mobile application and video games. 

Research on gender classification using facial images started 

at the in 1990s. Many researchers proposed various methods 

for Gender Classification with features like face, eyebrow, 

fingernail, gait, motion, gesture, fingerprint, iris, voice, 

emotion-speech, ear, etc. and bio-signals features (ECG, 

EEG, DNA, etc.). However, it is still a challenging task to 

definitely automate gender classification. In this paper, 

proposed method uses local information based shape 
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primitives as features for gender recognition. This paper is 

organized into sections as: Section I gives introduction, 

Section II is an overview of related work. Proposed model is 

described in Section III. Experimental results and discussion 

are given in Section IV. Conclusion are presented in Section 

V.  

II. RELATED WORK 

 

Researchers have explored gender classification using face 

[1, 2, 3]. Chen and Ross [1] used   utilized near-infrared and 

thermal face images for gender recognition using SVM, 

Adaboost and LDA classifiers.  Danisman et. al. proposed 

fuzzy inference system (FIS) with inner and outer facial 

features [2]. The authors used different classifiers with LBP 

as features. Gender recognition by combining the registered 

range from facial scans and intensity images [3].  Researchers 

have also investigated ear [4], fingerprint [5], hand geometry 

[6] and iris biometrics [7] for gender identification. Due to its 

simplicity and effectiveness, LBP [8], FWNP [9] and Central 

Local Binary Pattern based Structure Co-occurrence Features 

[10] are used in face recognition and age classification. Lian 

and Lu [11] utilizes LBP based textural features from face sub 

regions. Researchers also attempted with fusion of multiple 

biometric traits for gender classification. Li et al. [5] have 

employed fusion of fingerprint and face for gender 

recognition. Authors in Shan et al. [12] and Zhang and Wang 

[13] have performed gender classification using face and gait. 

 

III. METHODOLOGY 

The proposed method is shown in the block diagram of Fig.1 

and explained in detail in the following sub sections.  

 

Step 1. Image Preprocessing  

The original colour image is converted into a grey level image 

and then face part detected from grey level images, shown in 

figure1. 

Step 2: Fibonacci Weighted Neighborhood Pattern 

The local neighborhood information of pixels are represented 

with FWNP values. It is same as computing Local Binary 

Pattern(LBP) with Fibonacci weights {1,1,2,3,5,8,13,21} 

instead of  binary weights {1,2,4,8,16,32,64,128} and this 

FWNP [9] and LBP computing are shown in figure 3.  
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FWNP for each pixel in the image with their neighborhoods is 

represented by pattern with range of integers from 0 to 54, 

whereas Local Binary pattern (LBP) ranging 0 to 255. In 

FWNP only first 20 percent of Local Binary patterns are used 

for representing neighborhoods relation. 

 

Step 2: Fibonacci Weighted Neighborhood Pattern 

The local neighborhood information of pixels are represented 

with FWNP values. It is same as computing Local Binary 

Pattern(LBP) with Fibonacci weights {1,1,2,3,5,8,13,21} 

instead of  binary weights {1,2,4,8,16,32,64,128} and this 

FWNP [9] and LBP computing are shown in figure 3. FWNP 

for each pixel in the image with their neighborhoods is 

represented by pattern with range of integers from 0 to 54, 

whereas Local Binary pattern (LBP) ranging 0 to 255. In 

FWNP only first 20 percent of Local Binary patterns are used 

for representing neighborhoods relation. 

 

 

 

 
Fig.1: CFWNP_FBM Shape Primitive Features for Gender Classification 

 

 
Fig.2: Grey Conversion and Face Detection 
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Fig. 3: Computation of LBP and FWNP. 
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Step 3. Central FWNP Flooding Binary Matrix 

(CFWNP_FBM) 

The central FWNP flooding binary structure forms a group of 

FWNP values which have the same value as the central 

FWNP value over the 3x3 neighborhood. In a 3x3 FWNP, the 

neighbors with same central FWNP are set to 1 otherwise, it is 

set to zero. This formed 3x3 binary pattern is central FWNP 

flooding binary structure.  

Computing the CFWNP_FBM over FWNP Image is 

described as follows. 

(1)  Central FWNP flooding binary  structures CFBS1(p,q), 

CFBS2(p,q), CFBS3(p,q) and CFBS4(p,q) are computed 

starting from positions (1,1), (1,2), (2,1) and (2,2) 

respectively  with 3x3 block size from left-to-right and 

top-to-bottom throughout FWNP image CFBS(m,n) with a 

step-length of three in both horizontal and vertical directions.  

(2) Central FWNP flooding binary matrix, denoted by 

CFWNP_FBM (p,q)  is computed using equation 1. 

CFWNP_FBM (p,q) = ( CFBS1(p,q)  ∨  CFBS2(p,q)  ∨  

CFBS3(p,q)  ∨  CFBS4(p,q) )                                     

                                                                                    (1) 

 

  i.e. ∨ - is OR operation of CFBS1(p,q), CFBS2(p,q), 

CFBS3(p,q) and CFBS4(p,q)  values at position (p,q).Central 

FWNP Flooding Binary Matrix detection is shown in Fig.4. 

Step 4. Evaluation of Shape Primitives 

The shape primitives on 3x3 block are defined as follows. In 

Line Intersect Shape Primitive (LISP), nonzero binary 

elements occur in middle row and middle column and other 

elements are zeros. 

Diagonal Intersect Shape Primitive (DISP) contains non zero 

binary elements on principal diagonals.  In Horizontal Mid 

Line Shape Primitive (HMLSP) and Vertical Mid Line Shape 

Primitive (VMLSP) non zeros occur only in horizontal 

middle line and vertical middle line respectively. Intersect 

Line Diagonal Shape Primitive (ILDSP) contains all elements 

as nonzero. Centre Pixel Shape Primitive (CPSP) is only 

nonzero at central position. These primitives are shown in 

Fig.5. The number of occurrences of these shape primitives 

features are evaluated on Central FWNP Flooding Binary 

Matrix. 
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(a) 3x3 block with gray values          (b) Central pixel flood binary structure 
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(c ) Sub FWNP image                          (d)  CFBS1(p,q) 
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(e)  CFBS2(p,q)                                            (f)  CFBS3(p,q) 
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(g)  CFBS4(p,q)                            (h)  central pixel flooding binary matrix 

Fig.4. Computing Central pixel flooding binary matrix  
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Fig.5. Shape Primitives 

 

 

 

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS 

 

To figure out the gender classification performance of the 

proposed method, experiments are carried over FG-NET 

database of facial images and sample of these images are 

shown in figure 6. The frequency occurrences of LISP, DISP, 

HMLSP, VMLSP, ILDSP and CPSP are evaluated on Central 

FWNP Flooding Binary Matrix of considered database 

images. These evaluated features are represented in table1. 

From the experimental study, it is observed that features 

HMLSP, VMLSP, ILDSP and CPSP are considered as 

significant features in gender recognition. These considered 

features with SVM Classification algorithm has given 96% 

correct classification rate in gender recognition. Proposed 

method with shape primitive features outperforms with more 

accuracy compared to other existing methods. Comparison of 

proposed method with other methods for gender classification 

is shown in table 2 and figure 7. 

V. CONCLUSION 

In this paper, we proposed approach for gender recognition 

based on shape primitives’ features extraction on 

CFWNP_FBM. FWNP is a new method for identifying local 

information, the orientation of FWNP as a structure with 

binary shape primitives. Experiment carried out with this 

method on considered data set given gender recognition 

accuracy of 96%. A comparison of our proposed scheme with 

the other methods indicates a better performance in terms of 

accuracy. Future work can be directed CFWNP_FBM with 

new shape patterns, soft biometric traits and textural 

properties as features for gender classification. 
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Fig.6. FG-NET database sample images 

 

Table 1. The frequency of occurrences of LISP, DISP, HMLSP, VMLSP, ILDSP and CPSP shape primitives 

 

S.no Image LISP  DISP  HMLSP  VMLSP  ILDSP  CPSP 

1 001A18  0 0 57 59 51 3213 

2 001A19  0 0 107 31 23 3185 

3 001A22  1 0 125 59 116 3277 

4 001A29  0 0 78 86 24 3329 

5 001A33  1 0 58 90 40 4590 

6 003A20  0 0 11 3 6 3563 

7 003A49  0 0 90 100 73 3017 

8 003A60  0 0 35 60 24 3446 

9 003A61  0 0 54 77 72 3021 

10 004A19  0 0 72 2 1 4522 

11 004A21  0 0 56 43 27 3062 

12 006A36  0 0 44 20 26 3759 

13 006A42  1 0 55 64 72 3306 

14 006A46  1 0 27 26 24 3956 

15 006A51  1 0 65 87 80 3022 

16 006A67  0 0 82 76 65 3026 

17 012A14  0 0 57 40 175 2556 

18 012A23  1 0 51 53 27 2690 

19 012A24  1 0 59 38 95 2726 

20 012A26  1 0 104 76 62 2675 

21 012A27  1 1 68 102 93 2835 

22 026A13  0 1 38 48 112 2531 

23 026A15  1 1 54 44 91 2886 

24 026A17  1 0 49 43 123 2901 

25 026A18  1 0 28 47 49 2376 

26 026A19  0 0 34 43 26 2665 

27 054A09  1 0 76 57 182 2075 

28 054A10  0 0 65 54 72 2722 
 

 

 

 

 

 

 

Table2. Comparison of Gender classification methods with facial Features 



 

Gender Classification using Central Fibonacci Weighted Neighborhood Pattern Flooding Binary Matrix 

(CFWNP_FBM) Shape Primitive Features 

5243 

Published By: 

Blue Eyes Intelligence Engineering 

& Sciences Publication  

Retrieval Number F9284088619/2019©BEIESP 

DOI: 10.35940/ijeat.F9284.088619 

 

 

 

 

 

 

 

 

Feature Extraction 

Algorithms 

 

 

Database 

 

 

 

Accuracy 

 

 

Face Images 

Shape primitives on 

CFWNP_FBM 

FG NET 96% 

Adaboost-LBP[14]  LFW  94.81% 

LBP [15] 

 

BCMI and  FERET 

 

90% 

 

 
Fig.7. Proposed method accuracy rate with other methods 
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