
An Empirical Study on Discovering
Software Bugs Using Machine Learning
Techniques

G. Ramesh, K. Shyam Sunder Reddy, Gandikota Ramu,
Y. C. A. Padmanabha Reddy, and J. Somasekar

Abstract Bug is a defect in software which needs to be identified early so as to avoid
unnecessary burden caused by it later. Bug discovery from softwaremodules has been
around. However, of late, machine learning (ML) became a useful and appropriate
solution to many real-world problems. In this context, usage of machine learning has
become an important step forward in improving state of the art in bug detection. It is
an artificial intelligence-based (AI) approach that makes it more effective due to the
bulk of software modules. Many existing methods strived to incorporate ML for bug
discovery. However, there is need for improvement with appropriate methodology.
In this paper, we proposed a methodology that exploits two ML techniques known
as decision tree (DT) and random forest (RF) for efficient means of discovering
bugs from software modules. An empirical study is made using Python data science
platform. Experimental results showed that RF performs better than DT in terms of
accuracy of bug prediction.

Keywords Machine learning · Software bug discovery decision tree · Random
forest

G. Ramesh (B)
Department of CSE, GRIET, Bachupally, Hyderabad, Telangana, India
e-mail: ramesh680@gmail.com

K. S. S. Reddy
Department of Information Technology, Vasavi College of Engineering, Hyderabad, India

G. Ramu
Department of Computer Science and Engineering, Institute of Aeronautical Engineering,
Dundigal, Hyderabad 500 043, India

Y. C. A. P. Reddy
Department of CSE, B V Raju Institute of Technology, Narsapur, Telangana, India

J. Somasekar
Department of CSE, Gopalan College of Engineering and Management, Bangalore, India

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
R. Buyya et al. (eds.), Computational Intelligence and Data Analytics,
Lecture Notes on Data Engineering and Communications Technologies 142,
https://doi.org/10.1007/978-981-19-3391-2_14

195

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-3391-2_14&domain=pdf
mailto:ramesh680@gmail.com
https://doi.org/10.1007/978-981-19-3391-2_14


196 G. Ramesh et al.

1 Introduction

Early detection of software bugs is to be given paramount importance in the real-
world application development. It could lead to better performance in terms of saving
time, effort and money. If any bug is not discovered early, it is carried forward to
next phase in the life cycle of software. It becomes difficult later to fix the problem
as it is expensive and needs more time and effort. Of late, machine learning domain
has paved way to solve many complex real-world problems. It is widely used in
different areas and applications. Software development industry is also exploring the
benefits ofmachine learning.Discovery of bugs from software and related documents
is an important part in software engineering. From the literature, it is known that
different methods are used for bug detection in software related data sets. Most of
the solutions are based on active machine learning techniques. In this paper, we
proposed a methodology that exploits decision tree (DT) and random forest (RF) to
have bug prediction models. We evaluated the models to know the better performing
model. Our contributions in this paper are as followed.

1. Amethodology is proposed to haveDTandRFmodels to detect bugs in software.
2. DT and RF are used with specific approach to detect bugs.
3. An empirical study is made using Python data science platform and evaluation

showed that RF performs better than DT.

The remainder of the paper is structured as follows. Section 2 reviews literature.
Section 3 presents the proposed system. Section 4 presents experimental results, and
Sect. 5 concludes the work.

2 Related Work

This section reviews literature on bug discovery using machine learning approaches.
Ferreira et al. [1] employed machine learning to detect faults in wireless mesh
networks associated with solar power distribution system. Tan et al. [2] used C5.0
and random forest (RF) for prediction of network faults. Duenas et al. [3] focussed
on network failure prediction online by using event stream processing. Tran et al. [4]
used RF to discover software bugs in the bug reports. Tran et al. [5] on the other hand
explored different data analytics techniques used for detection of faults. Armbrust
et al. [6] investigated on the dynamics of faults in the context of cloud computing.
Hammouri et al. [7] explored machine learning methods to find bugs associated with
software development. Zhang et al. [8] defined an approach known as KSAP to have
bug report assignment in an efficient manner. Towards this end, they employed KNN
search-based methodology. Sabor et al. [9] investigated on the automatic predic-
tion of bugs and their severity levels with data pertaining to stack traces. Ramesh
et al. [10] define an approach for technique for identifying the code smells. Pooja
et al. [11] explored different techniques for analysing the software applications.



An Empirical Study on Discovering Software Bugs Using Machine … 197

Gupta et al. [12] defined a novel XGBoost-based model to predict software bugs
with supervised learning approach. Riza et al. [13] proposed an algorithm known
as Knuth–Morris–Pratt to identify genomic repetitions. Sheneamer [14] focussed on
finding code clones that are a kind of bugs in software development process. They
used multiple similarity-based features in order to achieve this. From the literature,
it is known that different methods are used for bug detection in software-related
data sets. Most of the solutions are based on active machine learning techniques. In
this paper, we proposed a methodology that exploits decision tree (DT) and random
forest (RF) to have bug prediction models. We evaluated the models to know the
better performing model.

3 Methodology

The proposed methodology includes the process of both DT and RF in prediction of
bugs. DT uses the training data set in order to grow a tree based on features. Then,
it finds the best split for every feature available. Then, it finds the required node
that leads to best split. The node is split using the identified best fit. It is based on
the stopping rules. After an iterative process for all nodes, a single decision tree is
formed. The splitting rule is based on Eq. (1) and Eq. (2).

H(S) = −
∑

x∈X
P(x) log P(x) (1)

IG(A, S) = H(S) −
∑

t∈T
P(t)H(t) (2)

The attribute that has highest information gain is considered to perform splitting.
In case of RF, multiple decision trees are generated, and ensemble model is used to
arrive at final predictions. The given data set is divided into number of subsets. A
training data set is used to construct a tree. Then, the DT-based approach is followed
for each tree. The tree is used to evaluate testing data set. After the iterative approach,
a RF of tree is generated.

4 Experimental Results

Experimental results are presented in terms of cross-validation score, accuracy and
consumption time.

As presented in Table 1, the cross-validation score is provided in presence of pre-
processing and absence of it. Pre-processing is used to improve quality of training
by filling missing values.

As shown in Fig. 1, the cross-validation score has its influence on both the number
of bug reports and the presence of pre-processing.



198 G. Ramesh et al.

Table 1 Shows the cross-validation score

Cross-validation score

5 10 15 20 25 30

With pre-processing 0.61 0.6 0.6 0.6 0.65 0.63

Without pre-processing 0.48 0.49 0.5 0.5 0.48 0.5

Fig. 1 Shows cross validation score against number of bug reports

As presented in Table 2, different number of bug reports (×10,000) have influence
on the prediction models in terms of accuracy.

As shown in Fig. 2, the accuracy score is influenced by the number of bug reports.
Random forest showed higher accuracy score.

As presented in Table 3, different number of bug reports (×10,000) have influence
on the prediction models in terms of priority accuracy.

As shown in Fig. 3, the priority accuracy score is influenced by the number of
bug reports. Random forest showed higher accuracy score.

As presented in Table 4, different number of bug reports (×10,000) have influence
on the prediction models in terms of consumption time.

Table 2 shows accuracy of the models

Accuracy score

5 10 15 20 25 30

Random forest 0.82 0.8 0.76 0.75 0.78 0.75

Decision tree 0.68 0.68 0.65 0.65 0.68 0.62



An Empirical Study on Discovering Software Bugs Using Machine … 199

Fig. 2 shows accuracy score against number of bug reports

Table 3 Shows priority accuracy of the models

Priority accuracy score

5 10 15 20 25 30

Decision tree 0.69 0.69 0.69 0.69 0.65 0.62

Random forest 0.72 0.72 0.73 0.75 0.75 0.74

Fig. 3 Shows priority accuracy score against number of bug reports



200 G. Ramesh et al.

Table 4 Shows consumption time of the models

Consumption time (S)

5 10 15 20 25 30

Random forest 1 2 3 4 5 7

Decision tree 5 7 12 20 25 35

Fig. 4 shows consumption time against number of bug reports

As shown in Fig. 4, the consumption time is influenced by the number of bug
reports. Random forest showed higher consumption time.

5 Conclusion and Future Work

In this paper, we proposed a methodology that exploits two ML techniques known
as decision tree (DT) and random forest (RF) for efficient means of discovering bugs
from software modules. The methodology describes how the two techniques are able
to find bugs. DT is the approach which is based on forming a decision tree to have
predictions. RF on the other hand uses multiple DTs and makes an ensemble of them
in order to have better prediction of bugs. An empirical study is made using Python
data science platform. Experimental results showed that RF performs better than
DT in terms of accuracy of bug prediction. The methodology explored in this paper
has several limitations. First, it has limitations in terms of number of ML methods.
Second, it needs further improvement in terms of processing of data prior to using
algorithms. In future, we overcome these limitations with further improvements in
methodology.



An Empirical Study on Discovering Software Bugs Using Machine … 201

References

1. Ferreira VC, Carrano RC, Silva JO, Albuquerque CVN, Muchaluat-Saade DC, Passos
DG (2017) Fault detection and diagnosis for solar-powered wireless mesh networks using
machine learning. In: Proceedings of IFIP/IEEE symposium on integrated network and service
management (IM’17), pp 456–62

2. Tan JS, Ho CK, Lim AH, Ramly MR (2018) Predicting network faults using Random forest
and C5.0. Int J Eng Technol 7(2.14):93–6

3. Duenas JC, Navarro JM, Parada HA, Andion J, Cuadrado F (2018) Applying event stream
processing to network online failure prediction. Commun Mag 56(1):166–170

4. Tran HM, Nguyen SV, Ha SVU, Le TQ (2018) An analysis of software bug reports using
Random forest. In: Proceedings of 5th international conference on future data and security
engineering (FDSE’18). Springer, pp 1–13

5. Tran HM, Nguyen SV, Le ST, Vu QT (2017) Applying data analytic techniques for fault
detection. Trans Large Scale Data Knowl Cent Syst (TLDKS) 30–46

6. Armbrust M, Fox A, Griffith R, Joseph AD, Katz R, Konwinski A, Lee G, Patterson D, Rabkin
A, Stoica I, Zaharia M (2010) A view of cloud computing. ACM Commun 53(4):50–58

7. Hammouri A, Hammad M, Alnabhan M, Alsarayrah F (2018) Software bug prediction using
machine learning approach. Int J Adv Comput Sci Appl 9. https://doi.org/10.14569/IJACSA.
2018.090212

8. Zhang W, Wang S, Wang Q (2015) KSAP: an approach to bug report assignment using KNN
search and heterogeneous proximity. J Inf Softw Technol 70:68–84

9. Sabor KK, Hamdaqa M, Hamou-Lhadj A (2019) Automatic prediction of the severity of bugs
using stack traces and categorical features. Elsevier J Inf Softw Technol

10. Ramesh G, Mallikarjuna Rao C (2018) Code-smells identification by using PSO approach. Int
J Recent Technol Eng (IJRTE) 7(4). ISSN: 2277-3878

11. Pooja ASSVL, Sridhar M, Ramesh G (2021) Application and analysis of phishing website
detection in machine learning and neural networks. In: Luhach AK, Jat DS, Bin Ghazali
KH, Gao XZ, Lingras P (eds) Advanced informatics for computing research. ICAICR 2020.
Communications in computer and information science, vol 1394. Springer, Singapore

12. Gupta A, Sharma S, Goyal S, Rashid M (2020) Novel XGBoost tuned machine learning
model for software bug prediction. 2020 international conference on intelligent engineering
and management (ICIEM), pp 376–380

13. Riza LS, Rachmat AB, Munir TH, Nazir S (2019) Genomic repeat detection using the Knuth-
Morris-Pratt algorithm on R high-performance-computing package. Int J Adv Soft Comput
Appl 11(1):94–111

14. Sheneamer AM (2021) Multiple similarity-based features blending for detecting code clones
using consensus-driven classification. Expert Syst Appl 183

https://doi.org/10.14569/IJACSA.2018.090212
https://doi.org/10.14569/IJACSA.2018.090212

	 An Empirical Study on Discovering Software Bugs Using Machine Learning Techniques
	1 Introduction
	2 Related Work
	3 Methodology
	4 Experimental Results
	5 Conclusion and Future Work
	References


