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A B S T R A C T   

Cardiovascular disease (CVD) represents an emerging death reason worldwide. CVD is based on the capability to 
discover the high-risk individuals before designing overt events. An effective technique for CVD risk prediction is 
developed using retinal fundus images. Initially, the retinal fundus images are subjected to pre-processing using 
grayscale conversion. The optic disc is detected with binarization and circle fixing. Then, the blood vessel seg-
mentation uses deep joint segmentation, wherein dice coefficient and binary cross-entropy are integrated. After 
that, the feature extraction is done for mining convenient features that include several statistical features. 
Meanwhile, features like Local Directional Texture Pattern (LDTP) and Local Gabor Binary Pattern (LGBP) are 
mined from the inputted image. Then, the cardiovascular risk prediction is made by a Deep neuro-fuzzy network 
(DNFN), such that the risks are classified into normal and hypertensive. Finally, the DNFN is trained using the 
developed Fractional Calculus-Horse Herd Optimization Algorithm (FC–HOA), which is devised by combining 
Fractional Calculus (FC) and the Horse Herd Optimization algorithm (HOA). The proposed FC–HOA-based 
DNFN offered enhanced efficiency with the highest accuracy, sensitivity and specificity of 91.6, 92.3 and 91.9%.   

1. Introduction 

CVD is an emerging reason of death all over the world. To stop heart 
attacks or undesirable cardiovascular events, it becomes essential to 
determine complete hazards splitted into modifiable and non-modifiable 
aspects. In the regular clinical setting, several clinicians used risk cal-
culators, like Framingham [1,2], Pooled Cohort equations [3], and 
SCORE [4,5] to forecast the future risks of cardiovascular diseases. The 
major risk aspects involve diabetes mellitus, cigarette smoking, Hyper-
tension, and cigarette smoking, leading to huge alterations in several 
organs and body tissue, like blood vessels, eyes, and kidneys [6]. The 
current standard of care to screen for CVD risks [7] needs a huge class of 
variables acquired from the history of patient and blood samples, like 
blood pressure, age, smoking, and gender. Most cardiovascular risk 
computations utilize the integration of these attributes to discover the 
risk of patients who experience whichever cardiovascular [8] occur-
rence and cardiac based mortality over a specific period. Still, some of 
these attributes can be unavailable [9]. In addition, the eye is an organ 
that permits straight visualization of specific non-invasive imaging 
modalities with neuro-vasculature that offers precious micro-structural 
changes, which lead to macro-vascular diseases, like stroke and heart 

diseases. It is observed that the criterions linked with CVD are choles-
terol emboli and hypertensive retinopathy, which can be evident in the 
eye [10]. 

The retina is generally inspected to screen complexities of particular 
CVD owing to its individuality in which blood vessels such as they are 
visible directly without invasive interventions or radiation. Using im-
ages, the arithmetical factor of retinal vasculature, like curvature tor-
tuosity, diameter and angles of branching, are evaluated to evaluate 
CVD, and diabetes. The retinal vessel diameters are observed to be 
linked with cognitive ability in the older population [11–13]. Retinal 
photographs offer data regarding human vasculature and provide il-
lustrations of cardiovascular health. Huge population studies have 
observed that retinal vascular damage and subtle alterations can predict 
CVD disease and death rates [14]. Automatic segmentation techniques 
for the retinal vessel segmentation process based on convolution neural 
networks can be kept with vessel morphological data. By executing the 
technique, a technique can understand features from the database, 
which helps to prevent over fitting. CVD prevention is based on the 
capability to discover individuals with elevated risk before designing 
explicit events. This focuses on the requirement for precise stratification 
of risks. An emerging count of new biomarkers is determined to predict 
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CVD events. Here, the biomarkers play an imperative role in defining, 
prognostication and making a decision concerning the administration of 
cardiovascular events [15]. 

Deep learning (DL) represents an ancestor of machine-learning 
models featured by several evaluation layers that permit a technique 
for learning the suitable predictive features based on samples despite 
features hand-engineered. In recent days, the deep convolution neural 
networks are termed as an imperative kind of deep learning model, 
which are optimized for images and are adapted to generate highly 
precise techniques that treat diseases like diabetic retinopathy and 
melanoma [16,17] with medical images achieved through expertise [9]. 
DL models are utilized to predict CVD risk aspects using retinal images 
[18,10]. DL has observed its feasibility in various medical tools, like 
imaging and diagnostics. Particularly, in medical images, deep learning 
is a tremendous ability which can be utilized to discover and segment 
objects in 3-dimensional (3D) images. The major benefit is that DL can 
mechanize complex analysis that radiologists could perform priory and 
is reliable at scale with high speed and less cost. It made DL an emerging 
model to automate the prediction of cardiovascular occurrence from the 
images. The commonality of the systems should be revealed as they 
require forecasting the cardiovascular proceedings of symptomatic and 
asymptomatic entities amongst several clinical cases and working 
strongly on data considering various institutions [19]. 

The main goal is to design a productive model for cardiovascular risk 
prediction with retinal fundus images using the proposed FC–HOA. 
First, to eliminate the extra noises present in the image using grayscale 
conversion the given input image is forwarded to the pre-processing 
phase. After that, optic disc detection is done with binarization and 
circle fixing. The next step is to segment the blood vessel from the pre- 
processed image using deep joint segmentation, wherein dice coefficient 
and binary cross-entropy are combined for computing distance. Once 
the segmentation is done, mining features is done to mine appropriate 
features. After that, cardiovascular risk prediction is effectively made 
using a DNFN such that the risk is classified into normal and hyper-
tensive types. Finally, the network classifier is trained using the newly 
projected FC–HOA, devised by an amalgamation of FC into HOA. 

The major contributions of the designed model  

• Proposed FC–HOA-based DNFN for cardiovascular risk prediction: The 
projected FC–HOA-based DNFN is utilized to predict cardiovascular 
risk. The output from the proposed FC–HOA-based DNFN is classi-
fied as normal and Hypertension.  

• Proposed FC–HOA: FC–HOA is created by combining FC concept 
into HOA. It is used to train the DNFN classifier. 

The rest of the sections are enlisted below. First, we explain the 
classical cardiovascular risk prediction methods in Section 2. Then, we 
have explained the proposed method for predicting the cardiovascular 
risk in Section 3. Thirdly, we have explained the efficiency of a projected 
model by comparing it with classical models in Section 4. Finally, dis-
cussion about conclusion is given in the Section 5. 

2. Motivations 

Various methods are used for cardiovascular risk prediction tech-
niques, but observing and analyzing the associations is complex due to 
many features in real data. Therefore, develop a technique is mainly to 
overcome the issues and the challenges faced by classical techniques. 

2.1. Literature survey 

The eight classical cardiovascular risk prediction methods are pre-
sented with their pros and cons. Poplin et al. [9] devised a deep model 
with retinal fundus images for predicting cardiovascular events. Here, 
cardiovascular risk factors, like gender, smoking status, and systolic 
blood pressure, were considered for the Evaluation. The method 

considered limited datasets. To deal with large datasets, Ting et al. [10] 
developed AI model for predicting cardiovascular risks. The Optical 
Coherence Tomography (OCT) was considered an effective imaging 
modality for evaluating CVD. The OCT angiographic alterations serve as 
a diabetes marker for effective prediction. This technique did not predict 
long-term cardiovascular risk. To predict long-term cardiovascular risk, 
Son et al. [13] devised Coronary Artery Calcium score (CACS) for pre-
dicting the cardiovascular events using retinal fundus imaging. Here, the 
efficiency of deep learning model, namely inception-v3 was computed to 
differentiate the high CACS. This technique was not suitable with het-
erogeneous databases.To deal with heterogeneous databases, Dai et al. 
[6] devised deep learning for screening the diabetes and Hypertension 
using retinal fundus images. The method splitted the image database for 
improved processing. Fine-tuning of the classifier and last convolution 
layer of deep residual network was trained by the binary classification 
model. The method acquired a huge acquisition cost. To minimize 
acquisition cost, Cheung et al. [20] devised an automated technique for 
predicting the cardiovascular diseases. The technique performed 
improved efficiency in predicting the CVD risk factors, including BMI, 
blood pressure, and hemoglobin levels. The method did not include Inter 
and Intra-human grader variability. To reduce complexity, Ballinger 
et al. [21] devised multi-task long short term memory for predicting the 
cardiovascular disease using fundus images. Here, the two 
semi-supervised training technique and heuristic pre-training was uti-
lized for processing the tasks. The method suffered from scarcity of 
labeled data. To minimize data scarcity issue, Zeleznik et al. [19] 
developed deep learning model for automatically quantifying cardio-
vascular disease. Here, the automatic score was a strong predictor of 
cardiovascular events and considered several risk aspects. The method 
did not discover non-calcified plaque. To discover non-calcified plaque, 
Rim et al. [14] devised a cardiovascular risk stratification model using 
DL for predicting the CVD. Here, the DL model was utilized for pre-
dicting the probability of existence of CAC. However, the misclassifi-
cation was a major issue. Mahiddin et al. [7] devised Interrelated 
Decision-Making Model for an Intelligent Decision Support System 
(IDM-IDSS-healthcare), which utilized knowledge from previous and 
ongoing treatment stages. The method is highly efficient. However, the 
method is very complex. Rahim et al. [8] proposed a Machine Learning 
based Cardiovascular Disease Diagnosis (MaLCaDD) for the effective 
prediction of cardiovascular diseases. Here, MaLCaDD method shows 
high precision and it is highly reliable. However, the method does not 
share the real time evaluation. 

2.2. Major challenges 

Problems confronted by existing CVD prediction are enlisted:  

• In [9], images with a 45◦ view were utilized, which is a major issue. 
In addition, it did not cover extra signals in retinal images, which 
permits improved CVD risk analysis.  

• The DL technique enhances CVD risk analysis [20], which can learn 
visual structures with images to predict major adverse cardiovascu-
lar events (MACE). However, it did not include my effectual features 
for predicting the risks.  

• To effective mine features, deep learning is utilized. However, even 
though the model attained the highest generalization, such as fine- 
tuning and data augmentation on test data, it suffered from over- 
fitting issues and had less training data [6].  

• The multi-task LSTM is devised in [21] that automatically predict 
cardiovascular events with images to deal with over fitting issues. 
Still, it could not forecast CVD events of symptomatic and asymp-
tomatic individuals in several clinical cases.  

• The majority of CVD risk factors utilize an integration of attributes 
for identifying a patient’s risks within a specified time instance. 
Anyhow, the unavailability of some attributes is considered a major 
problem. 
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Fig. 1. Structure of cardiovascular disease detection using FC–HOA-based DNFN.  
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3. Proposed FC–HOA-based DNFN for cardiovascular risk 
prediction 

The clinicians have carried out a fundus inspection amongst patients 
to discover existence and ruthlessness of retinal damage as way to 
evaluate cardiovascular disease. The stratification of risk is core part to 
discover and manage groups at risk for cardiovascular disease that led to 
huge deaths. The aim is to create a effective technique for predicting 
cardiovascular risk using retinal fundus images with proposed 
FC–HOA. The image attained from database indicated in [22] is 
adapted as an input image for complete processing. The input image is 
forwarded to pre-processing with grayscale conversion. Then, the optic 
disc detection is done with binarization and circle fixing [23]. The next 
step is to segment blood vessel from pre-processed image with deep joint 
segmentation [24] in which dice coefficient and binary cross-entropy 
are combined and used instead of MSE. Once the segmentation is 
done, the feature is mined from pre-processed image, blood vessel 
segmented image and optic segmented image. Thereafter, cardiovascu-
lar risk prediction is effectively done with DNFN [25], such that the risks 
are classified into normal and hypertensive type. Here, the DNFN is 
trained with proposed FC–HOA, which is devised by combining FC [26] 
and HOA [27]. Here, Fig. 1 shows the structure of cardiovascular disease 
detection using proposed FC–HOA-based DNFN. 

3.1. Acquisition of images 

Assume a database of the image A with f images and is verbalize as: 

A =
{
J1, J2,…, Jr ,…, Jf

}
(1)  

where, Jr is r th the input image and f refers to full images. 

3.2. Grayscale conversion pre-processing 

The input image Jr is adapted to pre-processing in which the con-
version of grayscale is performed to maximize the contrast of image. It is 
essential to pre-process the image, as it helps to increase image clarity. 
The pre-processing is done with grayscale conversion. 

Grayscale conversion: RGB color representation is the additive color 
model where red, green, and blue lights are utilized in various ways to 
reproduce huge array of colors. Grayscale conversion is a procedure of 
evaluating digital image into grayscale values, wherein each pixel rep-
resents a single sample. This means that grayscale only comprises in-
tensity data and this type of image is known as black and white, which 
exclusively composes shades of grey. Here, black indicates weal in-
tensity value in which white indicates strong value of intensity. The 
grayscale image results in evaluating intensity of light at each pixel in 
the single band of electromagnetic spectrum. The pre-processed output 
is given by J′

.

3.3. Detection of optic disc with circle fixing and binarization 

Once the pre-processing is done J′ , the optic disc detection is done 
with binarization and circle fitting model. Hence the discovery of optic 
disc is of huge importance for discovering cardiovascular risks.  

(i) Binarization 

The optic disc is determined with pre-processed image considering 
the smooth textures with binarization [23]. Binarization assists in 
dividing complex regions through the smoother regions by computing 
pixels values present in the image. The binarization is used to convert 
greyscale images ranging from 0 to 256 grey levels, which can be 0 or 1. 
In addition, binarization utilizes thresholding for producing binary im-
ages. Here, if pixel’s value is higher than the threshold value, it repre-
sents an object with one or its background pixel with 0. At last, 

considering the label, filling pixels built the binary image with black or 
white color.  

(i) Circle fitting 

The circle fitting [23] is a provided point group in a plane, consid-
ered the main part of image processing. Here, fixing the circle around 
the optic disc region performed the circle fitting. 

Parameters adopted in circle fitting are listed;  

(i) R- circle radius.  
(ii) Y-Circle’s "y"-co-ordinate.  

(iii) X- Circle’s "x"-co-ordinate. 

The optic disc acquired from the binarization and circle fitting is 
denoted asK. 

3.4. Blood vessel segmentation using the Deep Joint model 

The segmented blood cells are done with the Deep Joint model [24] 
using the pre-processed outputJ′ . It is the process of segmenting the 
blood cells. The steps of the Deep Joint model are illustrated below.  

(a) Illustration of Deep Joint model 

The pre-processed output has been fed as an input to lesion seg-
mentation, done with the Deep Joint model [24] to segment blood 
vessels by computing optimal threshold values. Hence, the 
pre-processed output is pushed to Deep Joint segmentation model, 
which discovers the distance is evaluated amongst deep and segmenta-
tion points and optimal segments with region similarity. The model 
provides segments with optimum accuracy and is easy to comprehend. It 
provides a clear insight into regions to discover the diseased part. The 
DeepJoint [24] comprises three phases: joining, region fusion, and 
segmentation point generation. The inputted picture is paired into grids 
& pixels first, and then attached using the mean and threshold values 
through the joining phase. After joining, the regions fusion is performed 
with bi-constraints and region similarities are adapted for determining 
new means for discovering mapped points. Steps adopted in the Deep 
Joint model are given below, 

Step 1: Grids configuration 
Various grids are obtained from the image where each grid has size of 

2 × 2. Collaborating with preprocessing image various grids are pro-
duced and are given by: 

B =
{
B1,B2,…,Be,…,Bg

}
(2) 

Where,Be symbolizeeth grid image and gsignifies full grids. 
Step 2: Joining phase 
After produced grids are obtained, intra grid points are combined 

with the threshold and values of the mean through the pixels. By taking 
average values of pixel the mean is evaluated. Hence, particular value of 
threshold that decides the pixels computes the mean. Thus, 1 is fixed to 
threshold. The computed average value is, 

Bj =

∑R

n=1
Hn

R
(3) 

Where, Hnsignifies values of a pixel with the grid and the pixel count 
in the grid Bj. The joining pixels equation is, 

Bj =

∑R

n=1
Hn

R
± α (4) 

Where α signifies threshold. 
Step 3: Region fusion phase 
By employing assigned grids, region fusion matrix is produced. For 

V. Srilakshmi et al.                                                                                                                                                                                                                             



Advances in Engineering Software 173 (2022) 103198

5

performing region fusion matrix two conditions need to be satisfied, 
they are given below  

(i) Gg Value of Mean, should be lesser than 3.  
(ii) For each gird one grid point is chosen. 

From the above conditions the region’s similarity determined, which 
is integrate to determine mapped points. The region similarity is, 

Gg =

∑I

w=1
HX
w

H
(5) 

Where, HX
w signifies joined pixels and Mexpresses total joined pixels. 

The grid is combined and makes a pair which is known as mapped points 
and is expressed by, 

F = F1,F2,…,Fu,…,Ft (6) 

Where, t signifies the count of mapped points in an image. 
Step 4: Deep points discovery 
Here, missed pixels determined the deep points. The equation is, 

E = {ϑℓ} ; 1 < ℓ ≤ κ (7) 

Where ϑℓ signifies missed pixels and symbolizes the full count of 
missed pixels. Thus, by adding missed pixels and mapped pixels we can 
evaluate the deep points and are given by, 

κpoints = E + Lp (8) 

Step 5: Optimal segment detection 
Lastly, providing an iterative method discovered the best segments 

with deep points. The segmented points given N are chosen arbitrarily. 
Thus, the lowest distance is, 

Pdist =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑q

p=1

(
Np − κpointsp

)2

√
√
√
√ (9) 

Continue the process, and points of optimum-segmented are selected 
with dice coefficient and binary cross-entropy, which is given as, 

XDis = β ∗ DC + (1 − β)BC (10) 

Where, β refers to constant, DCsignifies dice coefficient between Np 
and κpoints, and BC expresses binary cross-entropy κpoints. Lastly, the steps 
have been continued till a termination criterion is acquired. Assume 
output generated from the Deep Joint model is the segments expressed 
as Q. 

3.5. Acquisition of features 

After obtaining the segmentsQ, each segment is mined the feature. 
The mining of features guarantees the effectual classification of car-
diovascular disease prediction. Here, the features acquired from the 
input image are LGBP and LDTP, and the features acquired from seg-
ments that include statistical features are mined.  

(a) Features mined with the input image 

The features mined with input images Jr are LGBP and LDTP. These 
features are mined by dividing the images into regions of interest and 
classifying those regions.  

(i) LGBP 

The basic idea of LGBP [28] is that the LBP operator is adapted on the 
Gabor input images instead of adapting LBP on raw images. From each 
Gabor image we can consider the characteristic of the LBP histogram. By 
modifying histogram features on the entire energy images LGBP 

characteristic is produced. So, the LGBP operator feature size is large 
when compared to LBP, which owes to Gabor decomposition. An actual 
LBP operator plots image pixels with thresholding of 3 × 3 nearest pixel 
λp(p = 0, 1, ..., 7) using mid-value λcand a binary number is chosen as an 
output. The value of threshold using an image is binary form and is given 
below, 

ℜ
(
λp − λc

)
=

{ 1, λp ≥ λc

0, λp < λc
(11) 

After that, the LBP pattern pixel is given as, 

LBP =
∑7

p=0
ℜ
(
λp − λc

)
2p (12) 

The feature LGBP is termed as C1.  

(i) LDTP 

The LDTP [29] helps to encode the texture of the image by evaluating 
the edge response with eight directions considering the second deriva-
tive Gaussian mask and is given by, 

μ = 1
9

(

τc+
∑7

p=0
τp

)

(13) 

Where, τcis a central pixel, and τpis the peripheral pixel. 
To produce LDTP code, the indicator is defined, which is given as, 

ϑ(x, y) =

⎧
⎨

⎩

+1 If x >= 0 and y >= 0
− 1 If x <= 0 and y <= 0
0 Otherwise

(14) 

Where, x and y represent variants of LDTP.  

(a) Features mined with optic disc and blood cells 

The extracted optic discs and blood cells segment from the pre- 
processed image Q, and the features, like entropy, variance, standard 
deviation, skewness, energy, kurtosis, and mean, are computed.  

(i) Mean 

It is calculated by the image containing the average of the pixels and 
is given by, 

A2 =
1

|d(Cz)|
×
∑|d(Cz)|

z=1
d(Cz) (15)  

where, z symbolize complete segments, d(Cz) signifies pixel value at 
each segment, and |d(Cz)| express total pixel in the segment. The feature 
mean is given in A2.  

(i) Variance 

The value of the mean variance is computed and is given by, 

A3 =

∑|d(Cz)|

z=1
|Cz − A2|

d(Cz)
(16) 

Where, Czrepresents total pixels and A2signifies mean. The variance 
feature is given in A3.  

(i) Energy 

The energy contained in each segment is computed by adding en-
ergies of pixel contained in each segment and is expressed as, 
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A4 =
∑|d(Cz)|

z=1
ψ(Cz) (17) 

In addition, the energy is given in A4.  

(i) Kurtosis 

Kurtosis A5 symbolizes the peak’s sharpness using a frequency- 
distribution curve, and it is used to describe the degree wherein the 
scores cluster.  

(i) Entropy 

The entropy [16] symbolizes a metric utilized to discover uncer-
tainty. The entropy is given by, 

A5 = − Clog(C) (18)  

where,C signifies distribution of pixels probability and the feature en-
tropy is provided by A5.  

(i) Skewness 

Based on a numerical value it describes object shape and is expressed 
as A6  

(i) Standard deviation 

It describes variance square root and is given in A7. 
The feature vector is given by concatenating the features generated 

from each segment and is expressed as, 

A = {A1,A2,A3,A4,A5,A6,A7} (19) 

Where, A1 express mean A2 signifies variance, A3 is energy feature, 
A4 refers to kurtosis feature, A5 represent entropy feature, and A6 ex-
press skewness feature and A7 is the standard deviation. 

3.6. Prediction of cardiovascular diseases using proposed FC–HOA- 
based DNFN 

This section describes the DNFN [25] used to predict cardiovascular 
diseases. DNFN is adapted as a widespread approximator as its easy 
structure utilizes modern activation functions. The DNFN is used to 
handle a huge number of images. It contains the capability to address a 
large count of optimization problems. It provides better and prevents 
over fitting problems, which is adapted as an effective classifier as of its 
small model. Also, it discards the problems given by the classical acti-
vation function design, which is also simple and reliable to train the 
effectual performance. Finally, the feature vectorAis subjected to DNFN 
to predict CVD.  

(a) Structure of DNFN 

In DNFN [25], two steps are performed wherein the initial one is 
executed with a deep neural network, and the second is done with fuzzy 
logic to compute the system objective. It comprises the input and hidden 
layer for verifying and learning, and the output layer. The structure is 
modeled in Fig. 2. 

To describe data processing the mapping of each output and input is 
performed. Assume two given values z and a only use consequenty, the 
equation is, 

X1,w(z) = f Cw(z) or X1,w = f Pw− 2(a), ∀w = 1, 2, 3 (20) 

Where, a and z is input to all wth entities, fCw fPw − 2 indicates 
antecedent membership function, and X1,w is membership degree func-
tion. The equation is, 

f Cw(z) =
1

1 +

⃒
⃒
⃒
z=Dw
Nw

⃒
⃒
⃒

2Rw (21) 

Where, Rw, Dw and Nw refers to membership function. The firing 
strength of the rule implies the membership variable is, 

X2,w = μw = f Cw(z)f Pw− 2(a) , ∀w = 1, 2 (22) 

Fig. 2. Structure of DNFN.  
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Likewise, normalization in layer 3, wherein the proportion of firing 
strength of wth is the rule which is evaluated by each entity and μw is the 
general network attribute. Thus, firing strength normalized the result of 
each rule and is given, 

X3,w = μw =
μw

μ1 + μ2
, ∀w = 1, 2 (23) 

Furthermore, the defuzzification layer is also known as fourth layer, 
wherein each consequent is evaluated to indicate output and is given by, 

X4,w = μwIw = μw(Ewz+Fwa+Cw) , ∀w = 1, 2 (24)  

where, E, F and C is a set of parameters. The final result computation is 
given, 

X5,w =
∑

w
μwIw=

∑
wμwIw∑
wμw

(25) 

Thus, R is denoted as the output generated from DNFN, which helps 
detect if the image is normal or Hypertension.  

(a) DNFN Training with proposed FC–HOA 

FC–HOA is created by combining FC and HOA which performs the 
DNFN training. The HOA [27] is motivated by Particle Swarm Optimi-
zation (PSO) and is devised in a particle that updates position with 
learning, which provides a tradeoff between exploration and exploita-
tion. Meanwhile, FC [26] is acquired by averaging some consecutive 
observations wherein the values are weighed so that recent observations 
present a high issue on average. Next, there is no need to maintaining the 
dataset of all numbers. To determine small shifts FC is utilized to handle 
value of the target. The FC enhanced complete process quality and 
devised using historical observations. The integration of FC and HOA 
improves the complete efficiency and provides an optimum solution. 
Steps of the proposed FC–HOA are given: 

Step 1: Initialization 
Solution initialization is the first step which is given as T with total 

εsolution (i.e.)1 ≤ ν ≤ ε 

T = {T1,T2,…,Tν,…,Tε} (26) 

Where, ε refers to a total solution and Tν its νth solution. 
Step 2: Error determination 
Minimization issue is done because the solution is discovered with 

error and Hence, best solution creating minimal Mean Square Error 
(MSE) given by, 

MSerr =
1
g
∑g

h=1
[Mh − R]2 (27) 

Where, Mh refers output and R refers output created from DNFN, g no 
of data samples wherein 1 < h ≤ g. 

Step 3: Movement evaluation applied to horse 
To obtain a global optimum solution with improved accuracy we 

have to use HOA. As per HOA [27], the movement employed on a horse 
in every iteration is expressed as, 

Titer,aged = Iiter,aged + T(Iter− 1),Age
d (28) 

Where, TIter,age
d is horse position, is present iteration, and is the ve-

locity of the horse. 
The motion of horses is given as, 

I→
iter,α
d = UIter,αd + VIter,αd (29)  

I→
iter,β

d = UIter,βd +WIter,β
d + Yiter,βd + Viter,βd (30)  

I→
iter,γ

d = UIter,γ
d +WIter,γ

d + Yiter,γd + Ziter,γd + Viter,γd + Oiter,γd (31)  

I→
iter,δ

d = UIter,δ,d + ZIter,δd + Oiter,δd (32) 

Thus, the equation can be rewritten as, 

Taged (υ+ 1) = I→
age

d (υ+ 1) + T→
age

d (33)  

Taged (υ+ 1) − T→
age

d = I→
age

d (υ+ 1) (34) 

Apply FC [26], 

Dα[Taged (υ+ 1)] = I→
age

d (υ+ 1) (35) 

Where, α symbolize fractional coefficient. 

Taged (υ+ 1) − αTaged (υ) − 1
2
α.Taged (υ − 1) −

1
6
(1 − α).Taged (υ − 2)

−
1
24
α(1 − α)(2 − α).Taged (υ − 3)

= Iaged (t+ 1) (36) 

Assumeage = α, 

Iiter,αd = Uαd + V
iter,α
d (37)  

Iiter,aged (υ+ 1) = Uαd (υ+ 1) + Vαd (υ+ 1) (38) 

Projected FC–HOA updation is expressed as, 

Taged (υ+ 1) = αTaged (υ) + 1
2
α.Taged (υ − 1) +

1
6
(1 − α).Taged (υ − 2)

+
1
24
α(1 − α)(2 − α).Taged (υ − 3) + Uαd (υ+ 1) + Vαd (υ+ 1)

(39) 

Step 4: Grazing evaluation 
The abrasion area is modeled through each horse using coefficient g 

in such a way that each horse grazes on specific areas and is formulated 
as, 

UIter,aged = citer(τ+ ρκ)
[
T (iter− 1)
d

]
(40) 

Where, Uiter,age
d shows motion parameter of the horse and ωgis line-

arity, τsignifies upper bound, ρ signifies random number and κis lower 
bound. 

citer,aged = c(iter− 1),age
d × ωg (41) 

Step 5: Hierarchy evaluation 
By following a leader the horses pass their lives and are taken by 

human beings which is given, 

Witer,age
d = witer,aged

[
T(iter− 1)
∗ − T (iter− 1)

d

]
(42) 

Where, Witer,age
d is the effort of best horse location, and T(iter− 1)

∗ is the 
location of the best horse, ϖ is a factor, and ω(iter− 1),age

d which means to 
follow the strong person which is tendency of herd horse. 

witer,aged = w(iter− 1),age
d ×ϖ (43) 

Step 6: Sociability evaluation 
For average horse position, sociability evaluation is a movement and 

is given by, 

Yiter,aged = yiter,aged

[(
1
υ
∑υ

l=1
T(iter− 1)
l

)

− T (iter− 1)
d

]

(44)  

yiter,aged = y(iter− 1),age
d ×ϖy (45) 

Where, Yiter,age
d shows the social motion of the horse, and yiter,age

d shows 
concerned horse orientation, ϖy refers to the weight factor. 

Step 7: Imitation evaluation 
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For determining the suitable pasture location horses copy each other 
which is given by, 

Ziter,aged = ziter,aged

[(
1
my

∑my

l=1
T (iter− 1)
l

)

− T(iter− 1)

]

(46)  

ziter,aged = z(iter− 1),age
d ×ϖ (47) 

Where, Ziter,age
d motion vector of the horse moving to the best horse’s 

average my the best location of several horses, and ϖis per cycle 
reduction factor, and z(iter− 1),age

d is concerned horse behavior. 
Step 8: Defense mechanism evaluation 
Model horses away from unsuitable positions is corresponding to the 

defense mechanism and is given, 

Viter,aged = − viter,aged

[(
1
qN
∑qN

l=1
V(iter− 1)
l

)

− V(iter− 1)

]

(48)  

viter,aged = v(iter− 1),age
d ×ϖ (49) 

Step 9: Evaluation of room 
Younger ages we were determined to ride the horses, which means 

mitigates after maturity, which is given, 

Oiter,aged = oiter,aged ρT (iter− 1) (50) 

Where, Oiter,age
d is random velocity 

oiter,aged = o(iter− 1),age
d ×ϖ (51) 

Step 10: Error computation to update solutions 
Weights associated with the least error are employed to train DNFN 

where the error of the new solution is computed. 
Step 11 Terminate 
The highest iteration is acquired so we have to produce optimal 

weights until it acquired. Table 1 shows the algorithm of the created 
FC–HOA. 

The output generated with FC–HOA-based DNFN is expressed by R 
either normal or Hypertension. 

4. Results and discussion 

Using specificity, sensitivity and accuracy the efficiency of 
FC–HOA-based DNFN is evaluated by altering training data and K-fold. 

4.1. Experimental setup 

The experimentation is performed on PC with Windows 10 OS, 2GB 
RAM, and Intel core processor. The implementation tool used here is 
Python. 

Table 1 
Algorithm of devised FC–HOA.  

Input: Solution T 
Output: The best solution T* 
Begin: 
using Eq. (27) error evaluation; 
While not satisfied stopping criterion acquires, do 

Compute ages α, β, γ, δ 
Calculate the velocity of each horse using Eqs. (29)–(32) 
Discover a new position with grazing using Eq. (40) 
Discover new position with Hierarchy using Eq. (42) 
Discover a new position with sociability using Eq. (44) 
Discover a new position with imitation using Eq. (46) 
Discover a new position with a defence mechanism using Eq. (48) 
Discover a new position with roaming using Eq. (50) 

End while; 
using Eq. (27), revaluate error; 
υ = υ+ 1; 
End  

Fig. 3. Experimental outcomes of projected FC–HOA-based DNFN (a) Input 
image (b) Grayscale image (c) Optic disc image (d) Blood vessel image (e, f) 
LDTP image LGBP image. 
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4.2. Dataset used 

The experimentation is performed using 1000 fundus images having 
39 categories [22]. First, we define the process of fundus imaging is 
obtaining a two-dimensional (2D) representation of the 3D by using 
reflected light and retinal tissues, which are semitransparent viewed 
into the imaging plane. Here are thousand fundus images that belong to 
thirty nine classes. These images comprise 209,494 fundus images for 
training, validating and testing deep learning infrastructure. In this 
dataset, the image copyright fits in JSIEC. 

4.3. Experimental outcomes 

Fig. 3 represents the experimental results of the projected method. 
Fig. 3a and b shows the set of input images is revealed and reveals the 
grayscale image. Similarly, Fig. 3c and d displays the optical disc image 
and depicts the blood vessel image. Fig. 3e and f displays the LDTP 
image and the LGBP image. 

4.4. Evaluation measures 

The achievement of our approach is evaluated on the basis of the 
performance metrics, namely accuracy, sensitivity, and specificity. 

Accuracy: It defines the proportion of the addition of true positive 
rate (TPR) + true negative rate (TNR) and the addition of true positive 
rate (TPR) + False Negative Rate (FNR).+True Negative Rate(TNR) +
False Positive Rate (FPR). 

Accuracy a =
(P+ Q)

(P+ V + Q+ S)
(52)  

where, P indicates the TPR, S indicates the FNR,V indicates the FPR, and 
Q indicates the TNR 

Sensitivity: It indicates the capability of a method to properly classify 
the patients with cardiovascular disease. The equation of sensitivity is 
given below, 

λ =
c

c+ e
(53) 

Specificity: It expresses the aptitude of a method to properly identify 
people without the disease. The specificity is computed by below 
equation, 

γ =
o

o+ p
(54)  

4.5. Algorithm analysis 

Using specificity, accuracy and sensitivity the evaluations strategies 
are defined by varying training data and K-fold method. 

4.5.1. Evaluation training data 
Fig. 4 reveals Evaluation by varying training data. Fig. 4a indicates 

For 50% data, the accuracy generated by HQA+DNFN is 0.789, 
FC+BFO+DNFN is 0.811, SMO+DNFN is 0.834, and projected 
FC–HOA-based DNFN is 0.850. and, for 90% data, the accuracy created 
by HQA+DNFN is 0.876, FC+BFO+DNFN is 0.879, SMO+DNFN is 
0.888, and proposed FC–HOA-based DNFN is 0.905. The performance 

Fig. 4. Evaluation by changing training data (a) Accuracy (b) Sensitivity (c) Specificity.  
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improvement of HQA+DNFN, FC+BFO+DNFN, and SMO+DNFN con-
cerning proposed FC–HOA-based DNFN using accuracy is 3.204, 2.872, 
1.878%. Fig. 4b indicates for 50% data, the sensitivity created by 
HQA+DNFN is 0.800, FC+BFO+DNFN is 0.823, SMO+DNFN is 0.840, 
and projected FC–HOA-based DNFN is 0.861. Also, for 90% data the 
sensitivity created by HQA+DNFN is 0.876, FC+BFO+DNFN is 0.889, 
SMO+DNFN is 0.901, and projected FC–HOA-based DNFN is 0.912. 
The performance improvement of HQA+DNFN, FC+BFO+DNFN, and 
SMO+DNFN concerning projected FC–HOA-based DNFN using sensi-
tivity is 3.947, 2.521, 1.206%. Fig. 4c indicates for 50% data, the 
specificity generated by HQA+DNFN is 0.792, FC+BFO+DNFN is 0.814, 
SMO+DNFN is 0.815, and projected FC–HOA-based DNFN is 0.853. 
Also, for 90% data the specificity generated by HQA+DNFN is 0.878, 
FC+BFO+DNFN is 0.882, SMO+DNFN is 0.891, and projected 
FC–HOA-based DNFN is 0.908. The performance improvement of 
HQA+DNFN, FC+BFO+DNFN, and SMO+DNFN concerning projected 
FC–HOA-based DNFN using specificity is 3.303, 2.863, 1.872%. 

4.5.2. Evaluation with K-fold 
Fig. 5 displays the Evaluation of the projected FC–HOA-based DNFN 

by varying the K-fold. Fig. 5a indicates for k-fold = 5, 0.857 high ac-
curacy is created by projected FC–HOA-based DNFN, whereas the ac-
curacy achieved by HQA+DNFN, FC+BFO+DNFN, SMO+DNFN are 
0.797, 0.819, 0.841. Also, for k-fold = 9, 0.910 high accuracy is created 
by the projected FC–HOA-based DNFN, whereas the accuracy achieved 
by HQA+DNFN, FC+BFO+DNFN, SMO+DNFN are 0.883, 0.887, 0.896. 
The achievement of HQA+DNFN, FC+BFO+DNFN, and SMO+DNFN 
concerning projected FC–HOA-based DNFN using accuracy is 2.967, 
2.527, 1.538%. Fig. 5b indicates for k-fold = 5, 0.868 high sensitivity is 
created by projected FC–HOA-based DNFN while the sensitivity 

achieved by HQA+DNFN, FC+BFO+DNFN, SMO+DNFN are 0.808, 
0.830, 0.852. Also, for k-fold = 9, 0.919 highest sensitivity is created by 
projected FC–HOA-based DNFN, whereas the sensitivity achieved by 
HQA+DNFN, FC+BFO+DNFN, SMO+DNFN are 0.884, 0.897, 0.909. 
The achievement of HQA+DNFN, FC+BFO+DNFN, and SMO+DNFN 
concerning projected FC–HOA-based DNFN using sensitivity is 3.808, 
2.393, 1.088%. Fig. 5c indicates for k-fold = 5, 0.861 high specificity is 
created by projected FC–HOA-based DNFN, whereas the specificity 
achieved by HQA+DNFN, FC+BFO+DNFN, SMO+DNFN are 0.800, 
0.822, 0.844. And, for k-fold = 9, 0.915 highest specificity is created by 
projected FC–HOA-based DNFN, whereas the specificity achieved by 
HQA+DNFN, FC+BFO+DNFN, SMO+DNFN are 0.886, 0.890, 0.899. 
The achievement of HQA+DNFN, FC+BFO+DNFN, and SMO+DNFN 
concerning projected FC–HOA-based DNFN using specificity is 3.169, 
2.732, 1.748%. 

4.6. Comparative strategies 

The strategies taken for the evaluation includes DNN [10], DRN [6], 
CNN [20], Multi-task LSTM [21], IDM_IDSS [7], MaLCaDD [8], and 
projected FC–HOA+DNFN. 

4.7. Comparative analysis 

Differing training data and K-fold define the evaluations of 
strategies. 

4.7.1. Evaluation with training data 
Fig. 6 shows evaluation by varying training data. Fig. 6a indicates the 

accuracy of the methods. For 50% data, the accuracy achieved by DNN is 

Fig. 5. Evaluation of projected FC–HOA-based DNFN by varying K-fold (a) Accuracy (b) Sensitivity (c) Specificity.  
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0.769, DRN is 0.801, CNN is 0.823, Multi_taskLSTM is 0.846, IDM_IDSS 
is 0.837, MaLCaDD is 0.854 and Projected FC_HOA_DNFN is 0.862. Also, 
for 90% data, the accuracy achieved by DNN is 0856, DRN is 0.888, CNN 
is 0.891, Multi_taskLSTM is 0.900, IDM_IDSS is 0.891, MaLCaDD is 
0.902, and projected FC_HOA_DNFN is 0.916. The achievement of pro-
jected FC–HOA + DNFN with the comparative methods, such as DNN, 
DRN, CNN, Multi-task LSTM, IDM_IDSS, MaLCaDD is 6.550, 3.056, 
2.729, 1.746, 2.729 and 1.528%. Fig. 6b indicates sensitivity of the 
methods. For 60% data, the sensitivity achieved by DNN is 0.81, DRN is 
0.835, CNN is 0.846, Multi_taskLSTM is 0.865, IDM_IDSS is 0.857, 
MaLCaDD is 0.874 and Projected FC_HOA_DNFN is 0.894. Also, for 90% 
data, the sensitivity achieved by DNN is 0.853, DRN is 0.888, CNN is 
0.901, Multi_taskLSTMis 0.913, IDM_IDSS is 0.904, MaLCaDD is 0.908 
and Projected FC_HOA_DNFN is 0.923. Fig. 6c indicates specificity of the 
comparative methods. For 70% data, the specificity achieved by DNN, 
DRN, CNN, Multi_taskLSTM, IDM_IDSS, MaLCaDD, and Projected 
FC_HOA_DNFN are 0.836, 0.860, 0.871, 0.880, 0.871, 0.889 and 0.898. 

4.7.2. Evaluation with K-fold 
Fig. 7 shows evaluation using K-fold validation. Fig. 7a indicates the 

accuracy plot of the methods. For K-fold = 5, accuracy achieved by DNN, 
DRN, CNN, Multi_taskLSTM, IDM_IDSS, MaLCaDD and Projected 
FC_HOA_DNFN are 0.793, 0.769, 0.816, 0.838, 0.829, 0.807 and0.842. 
Also, for K-fold = 9, the accuracy achieved by DNN, DRN, CNN, Mul-
ti_taskLSTM, IDM_IDSS, MaLCaDD and Projected FC_HOA_DNFN are 
0.878, 0.837, 0.881, 0.890, 0.881, 0.899 and 0.911. Fig. 7b indicates the 
sensitivity plot of the methods. For K-fold = 5, sensitivity achieved by 
DNN, DRN, CNN, Multi_taskLSTM, IDM_IDSS, MaLCaDD and Projected 
FC_HOA_DNFN are 0.793, 0.769, 0.816, 0.838, 0.829, 0.807, and 0.842. 

Also, for K-fold = 9, the sensitivity achieved by DNN, DRN, CNN, Mul-
ti_taskLSTM, IDM_IDSS, MaLCaDD and Projected FC_HOA_DNFN are 
0.869, 0.845, 0.882, 0.894, 0.885, 0.890 and0.899. Fig. 7c indicates the 
specificity plot of the methods. For K-fold = 5, the specificity achieved 
by DNN, DRN, CNN, Multi_taskLSTM, IDM_IDSS, MaLCaDD and Pro-
jected FC_HOA_DNFN are 0.803, 0.772, 0.825, 0.848, 0.839, 0.826 
and0.852. and for K-fold = 9, the specificity achieved by DNN, DRN, 
CNN, Multi_taskLSTM, IDM_IDSS, MaLCaDD and Projected 
FC_HOA_DNFN are 0.890, 0.859, 0.893, 0.902, 0.893, 0.901 and 0.913. 

4.8. Comparative discussion 

Table 2 represents the evaluation with K-fold method and training 
data. When the analysis performed by varying the training data, the 
methods like DNN, DRN, CNN, Multi_taskLSTM, IDM_IDSS, MaLCaDD 
and Projected FC_HOA_DNFN have the accuracy of 0.856, 0.888, 0.891, 
0.900, 0.891, 0.902 and 0.916, respectively. Similarly, by varying the k- 
fold values, the accuracy obtained for Projected FC_HOA_DNFN is 0.911. 
When the analysis performed by varying the training data, the methods 
like DNN, DRN, CNN, Multi_taskLSTM, IDM_IDSS, MaLCaDD and Pro-
jected FC_HOA_DNFN have the sensitivity of 0.863, 0.888, 0.901, 0.913, 
0.904, 0.908 and 0.923. Whereas, by varying the k-fold values, the 
sensitivity obtained for Projected FC_HOA_DNFN is 0.899. When the 
analysis performed by varying the training data, the methods like of 
DNN, DRN, CNN, Multi_taskLSTM, IDM_IDSS, MaLCaDD and Projected 
FC_HOA_DNFN have the specificity of 0.867, 0.891, 0.894, 0.903, 0.894, 
0.902, and 0.919. Whereas, by varying the k-fold values, the specificity 
obtained for Projected FC_HOA_DNFN is 0.913. 

Fig. 6. Evaluation methods by varying training data (a) Accuracy, (b) Sensitivity, (c) Specificity.  
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5. Conclusion 

This paper devises productive model for CVD risk prediction using 
the retinal fundus images, which are subjected to pre-processing with 
grayscale conversion to make them suitable for improved processing. 
Then, discovery of the optic disc is made with binarization and circle 
fixing. Next, the blood vessel segmentation is done with deep joint 
segmentation, wherein the dice coefficient and binary cross-entropy are 
integrated to evaluate the distance. Next, mining effectual features are 
done to mine suitable features that include statistical features. Mean-
while, the features are extracted with the input image, like LDTP and 
LGBP. Finally, the prediction of cardiovascular risk is performed with 
DNFN such that the risks are categorized into normal and hypertensive. 
Here, the DNFN is trained with newly developed FC–HOA and is ac-
quired by joining FC and HOA. As a result, the projected FC–HOA-based 
DNFN provide high performance with the highest of 91.6% accuracy, 

92.3% sensitivity, and 91.9% specificity. Future works include consid-
ering other advanced database to check the efficiency of the projected 
model. 
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