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Alzheimer’s disease is the neuro disorder which characterized by means of Amyloid– β (A β) in brain. However, accurate
detection of this disease is a challenging task since the pathological issues of brain are complex in identi�cation. In this paper, the
changes associated with the retinal imaging for Alzheimer’s disease are classi�ed into two classes such as wild-type (WT) and
transgenic mice model (TMM). For testing, optical coherence tomography (OCT) images are used to classify into two groups.­e
classi�cation is implemented by support vector machines with the optimum kernel selection using a genetic algorithm. Among
several kernel functions of SVM, the radial basis kernel function provides the better classi�cation result. In order to deal with an
e�ective classi�cation using SVM, texture features of retinal images are extracted and selected. ­e overall accuracy reached 92%
and 91% of precision for the classi�cation of transgenic mice.

1. Introduction

­e most common form of disability is neurodegenerative
disease [1, 2]. Because Alzheimer’s disease has such a long
development period, patients can bene�t from frequent
testing and receive early treatment. However, due to their
high cost and limited choice, current clinical diagnostic
imaging techniques do not match the speci�c needs of
screening methods [3, 4]. We made it a priority in this study
to assess the retinal, particularly the retinal vasculature, as a
potential solution for performing dementia assessments in
Alzheimer’s chronic conditions. In�ammatory alterations

may begin 20+ years before neurological dysfunction
manifests, and though the time neurotoxic e�ects manifest,
cerebral deterioration has so far gradually extended. ­e
Alzheimer’s Society, the National Institute of Health, and
thus the Global Advisory Committee on AD have suggested
a study paradigm given a set of con�rmed indicators con-
nected towards both kinds of abnormalities that are proxies
for AD to identify AD in actual persons [5–7]. All across the
process, �exible scalable neural nets were used. ­e process
obtained an overall accuracy rate of 82.44 percent using data
from either the UK Biobank. It included a saliency analysis
of this pipeline’s understandability in addition to a high
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classifier shown in Figure 1.+e detection of transgenic mice
is carried out from the input fundus image, but the existing
approaches possess a higher false detection rate which de-
grades the accuracy of the system. Additionally, the fol-
lowing problems are faced in optimal detection of classes
which are listed as

(i) Difficulty in feature differentiation: the detection of
transgenic mice is based on various features such as
texture, color, and intensity, but the differentiation of
these minute features from each other is a hard task
that degrades the computation of accurate diseases

(ii) Class overlapping: the class of input image is also
determined by the existing approaches, but the
limited set of training data of each severity results in
a class imbalance problem affecting the accuracy of
classification

(iii) Improper preprocessing: the execution of conven-
tional proper preprocessing and effective en-
hancement of contrast techniques by the existing
approaches results in difficulty in identifying the
features from the background

+e major objective of this study is to provide precise
classification between theWTand TMM and to compute the
accuracy of the diseases in an accurate manner. +is ob-
jective is achieved by fulfilling the subobjectives which are
listed as follows:

(i) To minimize the level of artifacts in the input image
by performing effective preprocessing of the image

(ii) To maximize the precise identification of features
from the preprocessed image by performing en-
hancement of contrast level

(iii) To effective classify the images into two classes
based on the extraction of significant features

(iv) To determine the features related to the disease
based on the variation in the intensity of the features
for the purpose of diagnosis

2. Related Work

Under [8] article, authors investigated alterations in optic
disc linked with Alzheimer’s disease using the retinal as a
window into the central and peripheral nervous system.
Optical coherence tomography would be used to analyse the
retinas of transgenic mice models (TMM) and wild-type
(WT) of Alzheimer’s disease, and support vector machines
with the radial basis function kernel were used to categorize
the cells in the retina into TMM and WT classes. At the age
of four months, predictions were over 80% accurate, and at
the age of eight months, they were over 90% accurate. In line

with the results, feature extraction of generated fundus
images acquired shows a much more diverse retinal ar-
chitecture in mouse models at the age of eight.

Utilizing coregistered angle-resolved [9] low-coherence
interferometry (a/LCI) and optical coherence tomography,
we obtained insight light scattering data from the retinas of
triple transgenic Alzheimer’s disease (3xTg-AD) mice and
wild-type (WT) age-matched controls (OCT). Visual
guiding and segmentation depths supplied by cross OCT
B-scans were used to obtain perspective dispersion data
from the peripheral nerve layer, outer papillary overlay, and
endodermal epithelial. When comparing vivo mouse cells in
the retina to WT controls, OCT imaging revealed a sub-
stantial weakening of the nerve fibre layer. +e a/LCI
scattering measures offered additional information which
helps to differentiate AD mice by quantifying tissue het-
erogeneity. While compared to the WTmice, the AD mice’s
eyes demonstrated an increased range of values in motor
neuron layer interferometric strength.

In [10], the authors of this article describe the rela-
tionship between retinal image characteristics and cerebral-
amyloid (A) load in the hopes of establishing a benign
method for predicting A deposit in Alzheimer’s illness.
Moreover, while comparing to A+ individuals, a substantial
variation in textural predefined sequence across retina
capillaries and their neighbouring areas was detected in A+
participants. Using the collected characteristics, classifiers
are trained to classify new individuals. Including an effi-
ciency of 85 percent, the classification can distinguish A+
patients from “A” patients.

3. Proposed Work

+is section presents the description of the proposed model
for the classification of transgenic mice using SVMs.

3.1. Preprocessing. For enhancing the information for the
disease diagnosis system, it is necessary to use some of the
preprocessing steps as follows:

(i) Artifacts removal: blurriness, poor edges, and illu-
mination are called as artefacts, which are removed
using the nonlinear diffusion filtering algorithm,
which eliminates all kinds of artefacts and ensures
the image quality in terms of illumination correc-
tion and edge preservation

(ii) Contrast enhancement: low contrast is one of the
important issues of image classification. In this
work, we consider that contrast enhancement is an
optimization problem that intention is to optimize
the pixel values based on the contrasting level of the
input image.
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Figure 1: Typical flow for transgenic mice.
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(iii) Image normalization: normalization of the image is
valuable to variation of pixel intensity or RGB color
values for retina images that increase the quality of
acquired fundus images by decreasing the equip-
ment and desired noises of the retina images.
Following, the misrepresentations and fluctuations
that happened in the retina images because of in-
exact image internment are recognized.+roughout
the normalization of the image, the learned image is
transformed into predetermined values. +e for-
mula for the estimation of image normalization is
exactly denoted as follows. Image normalization is a
technique of preprocessing that uses certain types of
range as an expected outcome for the given inputs.
It is useful for the prediction of forecasting pur-
poses. Here, we know that there are several ways for
forecasting and also prediction to maintain the large
variations and also forecasting the normalized
values makes the closer. +ere are some existing
normalization techniques that are used for image
normalization, which are as follows:

(i) Min-max normalization
(ii) Z-score normalization
(iii) Decimal scaling

Figure 2 describes the proposed work. In the following,
the description of these normalization techniques is given in
detail.

(i) Min-max normalization: this technique provides the
transformation function for linear cases by the
original values of data which is known as the min-
max normalization technique. +is technique uses
predefined boundary for the specific retina images.
+e min-max normalization for the proposed
technique is estimated as follows:

􏽢A �
A − minA

maxA − minA

􏼠 􏼡 ×(D − C) + C, (1)

where 􏽢A represents the normalized value of min-
max data values and when the predefined boundary
is between the C and D. When the range of values of
A and B is matched between one another is used for
result validation.

(ii) In general unstructured data can be normalized
using Z-score normalization, which is represented as
follows:

Vi
′ �

Vi − E

STD (E)
, (2)

where Vi is the Z − score normalized values of the
input, and E represents the row E of the ith column.

STD (E) �
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2
, (4)

where E is the mean value of the inputs. +is
technique uses five rows such as X, Y, Z, U, and V
for different columns for “N” for each row in which
each row represents the Z-score technique that
applies for computation of the normalized values. So
that the standard deviation of the row is equal to the
zero, then all values for the row are fixed to the zero
values. It also gives the range of values between 0 and
1. In the technique of decimal scaling, the range is
between − 1 and 1. Based on the decimal scaling for
image normalization, it is computed by the following
equation:

v
i

�
v

10j
, (5)

where vi represents the scaled values, v represents the
range of values, and j represents the small integer
Max (vi)< 1. +e above-mentioned techniques can
be useful for discussing the values of normalization.

+e combination of the above three techniques helps in
producing the result, that is, improved min-max decimal
with Z_normalization). +e proposed retina image nor-
malization technique is the advanced and most effective
normalization technique that uses various types of input
images, and also, it produces outputs in the range of 0 to 1.
+e normalization techniques can be possible for taking the
average values as a threshold and then normalizing or
replacing the values of the other side of pixels using themean
and standard deviation.

As compared to the min-max, Z-score, and decimal
scaling techniques for image normalization, the proposed
advanced technique for image normalization produces an
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Figure 2: Proposed work.
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effective result. +e proposed technique is used for image
normalization that produces the following advantages than
the other existing methods.

(i) Suited for any volume of datasets (large, small, or
medium size datasets)

(ii) Individual pixel-based scaling and transformation
are possible

(iii) Used to make the independent data size
(iv) Set the range between 0 and 1 and have the nor-

malized values
(v) Easy to apply for whole numerical data values

+e proposed innovative normalization technique is
mathematically expressed as follows:

Y �
|X| − 10n− 1

􏼐 􏼑 ×(|A|)􏼐 􏼑

10n− 1 , (6)

where X represents the particular element of the data, N

represents the number of digits in the element of X, A

represents the pixel element for 1st digit X, and Y represents
the scaled 1 value between 0 and 1. +e proposed model is
applicable for all types of input lengths to the full types of
integers. +is technique is different than the existing nor-
malization approaches which are as follows:

(i) Changed from the unstructured to the structured
one.

(ii) Purpose of formulation/scaling.
(iii) All the inputs are numerical data only.
(iv) Low light enhancement: recent methods for low

light enhancement methods are not assured for
applying in low light environments. In order to
design the new method for low light enhancement,
it should focus on the following.

(v) Enhance the efficiency and robustness of the low-
light image enhancement algorithms, and the pre-
vious methods are not supported for insufficient
techniques tomeet theneedsof current applications.

(vi) +is method should be able to adjust for the dif-
ferent types of images on different scales to pro-
duce an extraordinary result.

(vii) Minimize the complexity (time, space) for overall
computations that are available to all the methods.
+is satisfies the practical application, and also,
real-time images must be supported to use this.

(viii) Most of the existing techniques are used for longer
operations and hence take more processing time.
And still, it leads to two problems such as detail
ambiguity and color deviations.

(ix) Establishes the higher quality of the image eval-
uation in which image information recovery and
color recovery functions are used for adjusting the
low light enhancements.

To address these issues for this step, multiscale Retinex
theory is proposed, which is a color restoration method that
processes the image quality for further enhancement using
the single-scale Retinex or multiscale Retinex method. +is
algorithm is applied for 3 kinds of color channels such as R,
G, and B separately. +us, here, the original image is con-
verted into the number of channels. +is avoids the color
distortion issue. For each algorithm, the color recovery
factor C is computed. +is computes the proportional re-
lationship between the R, G, and B channels. +is mathe-
matically expressed equation is as follows:

Ci(x, y) � Fi

Ii(x, y)

􏽐
3
i Ii(x, y)

, (7)

where F represents the function for mapping the color
values, and the performance of the best color intensity values
for restoration and recovery helps in mapping the function
in which logarithmic is used for computations of color
recovery.

Ci(x, y) � β × log(α)
Ii(x, y)

􏽐
3
i Ii(x, y)

, (8)

where α and β are the mathematical expressions for variables
in which logarithmic function is computed and rewritten as
follows:

MRT � log Ri(x, y), (9)

􏽘

k�1

N

Ciwk log Ii(x, y) − log Gk(x, y) × Ii (x, y)􏼂 􏼃􏼈 􏼉. (10)

+is algorithm considers the merits of the convolution
operation using Gaussian computations. For the multiscale,
that is, small, medium, and large range of patches yield good
ideal effects. +e performance of color restoration is im-
proved using the color recovery factor values since it is
updated for concurrent iterations.

3.2. Feature Extraction. +e gray level co-occurrence matrix
captures numerical features of a texture using spatial rela-
tions of similar gray tones. +e following are the features

Table 1: Statistical GLCM features-22.

Feature name Description
Autocorrelation Sum of squares
Contrast Sum average
Correlation 1 & 2 Sum variance
Cluster prominence Sum entropy
Cluster shade Difference variance
Dissimilarity Difference entropy
Energy Information measure of correlation 1 & 2
Entropy Inverse difference normalized (INN)
Homogeneity 1 & 2 Inverse difference moment normalized
Maximum probability
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derivable from a normalized co-occurrence matrix in
Table 1.

3.2.1. Computation of Textural Features from Normalized
GLCM.

Energy:
measures the uniformity (or orderliness) of the gray
level distribution of the image
Range� [0 1]

􏽘
i,j

p(i, j) � 0.1662 + 0.0832 + 0.0422 + 0.0832+

0.1662 + 0 + 0.0422 + 0 + 0.02502 + 0.0422.
(11)

Homogeneity: measures the smoothness (homogeneity)
of the gray level distribution of the image; range� [0 1]

􏽘
i,j

p(i, j)

1 +|i − j|
� 0.8155. (12)

Table 2: List of features.

S.No Feature Formula Description

1 Autocorrelation 􏽐i,j(ij)p(i, j)
It measures the coarseness of an image and evaluates the linear spatial

relationships between texture primitives.

2 Contrast 􏽐i,j|i − j|2p(i, j)

Represents the amount of local gray level variation in an image; a high
value of this parameter may indicate the presence of edges, noise, or

wrinkled textures in the image.

3 Correlation 1 􏽐i,j(j − μy)p(i, j)/σxσy

Gives a measure of how correlated a pixel is to its neighbor over the
whole image.

4 Correlation 2 􏽐i,j(ij)p(i, j) − μxμy/σxσy

Gives a measure of gray level linear dependence between the pixels at the
specified positions relative to each other.

5 Cluster shade 􏽐i,j(i + j − μx − μy)3p(i, j)
Cluster shade and cluster prominence are measures of the skewness of

the matrix, in other words the lack of symmetry.
6 Cluster prominence 􏽐i,j(i + j − μx − μy)4p(i, j) Gives a measure of local intensity variation.

7 Dissimilarity 􏽐i,j|i − j|p(i, j)
Dissimilarity measure belongs to the contrast group of texture metrics.

Gives a measure of dissimilarity.

8 Energy 􏽐i,jp(i, j)2
Measures the uniformity (or orderliness) of the gray level distribution of
the image; images with a smaller number of gray levels have larger

uniformity.

9 Entropy − 􏽐i,jp(i, j)log(p(i, j))
Inhomogeneous images have a low entropy, while a homogeneous scene

has high entropy.

10 Homogeneity 1 􏽐i,jp(i, j)/1 + |i − j|
Gives a value that measures the closeness of the distribution of elements

in the GLCM to the GLCM diagonal.

11 Homogeneity 2 􏽐i,j1/1 + (i − j)2p(i, j)

Measures the smoothness (homogeneity) of the gray 12level distribution
of the image; it is inversely correlated with contrast—if contrast is small,

usually homogeneity is large.
12 Maximum probability MAX p

i,j

(i, j) Gives a measure of max. Frequency of occurrence of pixel pairs.

13 Sum of squares: Variance 􏽐i,j(i − μ)2p(i, j)
Measures the dispersion (with regard to the mean) of the gray level

distribution.
14 Sum average 􏽐

2Ng
i− 2 ipx+y(i) Measures the mean of the gray level sum distribution of the image.

15 Sum variance 􏽐
2Ng
i− 2 (i − [􏽐

2Ng
i− 2 ipx+y(i)])2

Measures the dispersion (with regard to the mean) of the gray level sum
distribution of the image.

16 Sum entropy − 􏽐
2Ng
i− 2 px+y(i)log px+y(i)􏽮 􏽯

Measures the disorder related to the gray level sum distribution of the
image.

17 Difference variance 􏽐
2Ng
i− 2 (i − [􏽐

2Ng
i− 2 ipx− y(i)])2

Measures the dispersion (with regard to the mean) of the gray level
difference distribution of the image.

18 Difference entropy − 􏽐
2Ng
i− 2 px− y(i)log px− y(i)􏽮 􏽯

Measures the disorder related to the gray level difference distribution of
the image.

19 Information measure of
correlation 1 HXY − HXY1/max HX, HY{ } H is the entropy. HXY1 � − 􏽐i,jp(i, j)log(px(i), py(j)).

20 Information measure of
correlation 2

����������������
1 − e[− 2(HXY2− HXY)]

√
HXY2 � − 􏽐i,jp(i, j)py(j)log(px(i), py(j)).

21 Inverse difference
normalized (IDN) 􏽐

Ng− 1
i�0 p(i, j)/1 + (|i − j|/N)

IDMN and IDNmeasure image homogeneity as it assumes larger values
for smaller gray tone differences in pair elements. It is more sensitive to
the presence of near diagonal elements in the GLCM. It has maximum

value when all elements in the image are same.

22
Inverse difference

moment normalized
(IDMN)

􏽐
Ng− 1
i�0 p(i, j)/1 + (|i − j|2/N2)
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Table 3: List of shape features.

Sl.No Feature Formula Description

1 Circularity C � 4πArea/(Perimeter)2
A measure of roundness or circularity (area-to-perimeter ratio) can be obtained as
the ratio of the area of an object to the area of a circle with the same convex
perimeter.1-for a circular object and <1 or >1 for an object that departs from

circularity.

2 Eccentricity E � axislengthshort/axislengthlong
Eccentricity is the ratio of the length of the short (minor) axis to the length of the

long (major) axis of an object. Range: 0 to 1.

3 Orientation θ � 1/2tan− 1(2μ11/μ20 − μ02)
+e orientation is the angle between the horizontal line and the major axis. It

indicates the overall direction of the shape. Range: − 90° to 90°

Support Vector

Margin

Optimal Hyperplane

Class A Sample 
Class B Sample 

Figure 3: SVM for classification of transgenic mice.

(a) (b)

(c) (d)

Figure 4: (a) and (b) retinal images, and (c), (d) OCT images.
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Contrast: Tables 2 and 3 give a measure of the intensity
contrast between a pixel and its neighbor over the
whole image

Range� [0 (size(GLCM,1)-1)2]

3.3. Classification. For the classification of retinal images
into two classes such as WTand TMM, SVMs are used, and
the optimum kernel function is selected from the set of
kernel functions for the classifications. Figure 3 discusses the
pictorial representation for the classification using SVMs.

4. Experimental Results and Discussion

+is proposed work is mainly implemented to provide
precise classification between the WT and TMM for ob-
tained accuracy of the diseases in an accurate manner. +is
proposed work undergoes preprocessing and feature ex-
traction. +e preprocessing technique is performed to
minimize the level of the artifacts in the input image, and the
enhancement of the contrast level is performed to increase
the precise identification of features from the preprocessed
image. +en, feature extraction is implemented to classify
the images into two classes based on the extraction of sig-
nificant features in an effective manner.

In this section, the performance of the proposed model is
implemented for the sum of images in the dataset in Fig-
ure 4. Table 4 describes the confusion matrix for the two
classes with the use of four kinds of metrics.+e definition of
each metric is given below, and classifier performance is
shown in Table 5.

(i) True positive (TP) is the no. of candidates correctly
identified as TMM

(ii) False positive (FP) is the no. of candidates incor-
rectly identified as TMM

(iii) True negative (TN) is the no. of candidates correctly
identified as non-TMM

(iv) False negative (FN) is the no. of candidates incor-
rectly identified as non-TM

Sensitivity �
TP

TP + FN
�

18
18 + 06

� 75%, (13)

Specificity �
TP

TP + FN
�
1643
2256

� 72.82%, (14)

FPR � (1 − Specificity) �
TP

TP + FN
�

613
2256

� 0.271,

(15)

Accuracy �
TP + TN

TP + FN + TN + FP
�
1661
2280

� 72.85%. (16)

5. Conclusion

Alzheimer’s disease is a progressive neurodegenerative ill-
ness defined by the presence of Amyloid–(A) in the brain.
Nevertheless, because the degenerative concerns of the brain
are complicated in classification, precise detection of this
condition is a difficult process. +e abnormalities in retinal
fundus images for Alzheimer’s disease are divided into two
categories in this paper: wild-type (WT) and transgenic mice
model (TMM). Optical coherence tomography (OCT)
pictures are utilised to classify the patients into 2 categories
for assessment. SVMs are used to classify the data, only with
the best kernel selected via an evolutionarymethod.+e RBF
kernel function outperforms the other SVM support vectors
in terms of accuracy. +e textural properties of retinal
fundus images are used to deal with just an efficient cate-
gorization utilising SVM. +e overall accuracy reached 92%
and 91% of precision for the classification of transgenic mice.
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