
Generic Recommendation Engine using Hybrid

Filtering Model
Dr Sushmitha Valli,K Abhijith Saralaya

Computer Science and Engineering, Gokaraju Rangaraju Institute of Engineering and Technology

ABSTRACT:

 Recommendation system provides the facility to understand a

person's taste and find new, desirable content for them

automatically based on the pattern between their likes and

rating of different items. Recommendation systems are mainly

employed in applications such as online market, which works

with big data. Performing data mining on big data is a tedious

task due to its distributed nature and enormity. There are

humanely overwhelming number of items for us to inspect,

evaluate and choose from. This poses a huge challenge, since

overwhelming the customers with huge catalog of items out of

which the major portion of items are unrelated to user

preferences.

There is an imminent need for a recommendation system that

eases the process of choosing products by the user and thereby

enriching the user experience. To overcome this problem, a

recommendation system that uses multiple ML algorithms, a

hybrid version of content based filtering and collaborative

item-item filtering algorithm is implemented so as to achieve

better accuracy in recommendations. The project is aimed to

result in a generic recommendation engine suitable for using

with any type of items irrespective of domain and datasets.

Keywords—user preferences, big data,item-item collaborative

filtering

1. INTRODUCTION

Recommender Systems are tools that emerged in the 90s
which are commonly defined as software tools and techniques
used to provide suggestions for items to users.

Recommendation algorithms are mostly used on e-commerce
web sites like Amazon, Flipkart and Myntra where they make
use of customer’s interests and display a subset of items.
Many of these algorithms use only the items that are
purchased or viewed by customer previously.

But other attributes like demographic data, favorite items,
favorite sellers, artists can also be used for much effective
recommend dation. Recommender systems are very good at
handling the information overload problem, they provide a
customized, personalized set of recommendations for each
specific user thereby showing them with content that is
relevant to them, thereby easing the amount of effort the users

need to exert to filter and find items that they desire. These
systems act as means of assisting the social process of using
others suggestions, reviews when there is no previous
knowledge at the user-side. These systems can either make use
of collaborative filtering, content based filtering or hybrid
filtering.

People have always relied on other people’s suggestions for
decision making whenever there are many options in order to
make the best decision. In the last decade or so,the amount of
digital information has grown in an exponential manner,
leading to huge information that is mostly not rated and
arranged properly. Information overload is difficulty in
understanding an issue and making decisions when one has
too much information about that issue, it is generally
associated with excessive quantity of information. Information
overload generally occurs when a person is exposed to huge
and more information than the brain can process at one time.”
As more and more complex information is taken in by us in a
very less amount of time and we happen to have more options
laid out in front of us, our brains start to panic, resulting in us
losing the ability to make good decisions.

These recommendation algorithms find a set of customers
who also purchased a similar subset of items that are also
purchased by the user. Then concerned ratings are also
considered for filtering. Then finally all these items are
aggregated from the previously computed similar set of
customers, in the meanwhile all the items that are already
previously purchased by the user are eliminated, in turn
showing the remaining list of items. There are two types of
such algorithms, these are collaborative filtering and cluster
models. Other less popular versions are search based methods
which focus on finding similar items but not similar
customers. Amazon’s item-item collaborative filtering
algorithm is one such example of this.

2. LITERATURE SURVEY

Hybrid Recommendations: -

In this paper [7] the author details the intricacies of hybrid
recommendation systems. Hybrid algorithms are implemented
in several ways either by making collaborative-based
predictions and content-based separately and then combining
them or by adding collaborative-based capabilities to a
content-based approach and vice-versa or by unifying the
approaches into one model. Several studies that compare the
performance of the hybrid with the pure collaborative and
content-based methods demonstrated that the hybrid methods
can provide more accurate recommendations.

978-1-6654-9781-7/22/$31.00 ©2022 IEEE20
22

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 E

le
ct

ro
ni

cs
, C

om
pu

tin
g

an
d

C
om

m
un

ic
at

io
n

Te
ch

no
lo

gi
es

 (C
O

N
EC

C
T)

 |
97

8-
1-

66
54

-9
78

1-
7/

22
/$

31
.0

0
©

20
22

 IE
EE

 |
D

O
I:

10
.1

10
9/

C
O

N
EC

C
T5

56
79

.2
02

2.
98

65
76

6

Hybrid recommendation algorithms can be used to overcome
problems like cold start problem and knowledge engineering
bottleneck, sparsity problem that arise in recommendation
scenarios. It demonstrates offline and online similarity
computations for better scalability.

Item-to-item collaborative filtering: -

In this paper[1] the author has proposed a collaborative
filtering algorithm based on items rather than users.
Instead of matching users to similar customers, item-to-
item collaborative filtering matches the user’s purchased
items to similar items, then in turn combining them to
generate a recommendations list. A similar-items table is
built to find items that customers tend to purchase
together. We could build a product-to-product matrix by
iterating through all item pairs and computing a similarity
metric for each pair. It exposes the drawbacks of user-
based filtering like scalability and sparsity. The paper also
introduces correlation based similarity.

Content based filtering vs collaborative filtering:-

In this paper[2] the author details the two most popular
algorithms already present namely Content based filtering
and Collaborative based filtering. The paper discusses the
basics of recommendation systems and also gives a highly
intuitive overview of how & why recommendation systems
work the way they work. Collaborative filtering
approaches build a model from a user's past behavior along
with decisions that are similar which are made by other
users and then these algorithms use that model to predict
items that the user may mostly be interested to engage
with. Content-based filtering algorithms make use of a
series of characteristics of an item in order to recommend
additional items with similar properties. Content-based
filtering is another approach for recommender systems.
These methods are based on user preferences and user’s
past behavior in addition to description of the item and.
The keywords are used to describe an item to indicate the
item’s characteristics which are used for generating
recommendations. These algorithms try to recommend
items that are similar to those items that a user liked in the
past.

Fig 1: Collaborative filtering & content based filtering

3. PROPOSED SYSTEM

The system makes use of two already present-tested

recommendation algorithms mainly content based and

collaborative item-item filtering algorithms. Behavioral events

like search terms used, navigation-history, items bought, items

rated and many other data points derived from user input are

captured for feature extraction.

The whole system is dependent on item-item similarities. This

similarity computation is very expensive and so this similarity

computation is done periodically or whenever a new item is

introduced into the catalog. Two items similarity is directly

proportional to the similarity score of these items given by the

respective algorithm used to compute the result and so for two

items there are two similarity scores one from content based

recommendation and other from item-item collaborative

filtering algorithm. These two scores are combined into a

hybrid score which mandates the system on what to

recommend to the user. Content based score denotes the item-

item similarity based on the item-attributes only.

Collaborative based score denotes the similarity based on user

ratings.

This hybrid score is calculated as:

hybridScore=contentScore+item-

itemCollaborativeScore*(avgRatingOftheTwoItems)

Higher the hybrid score, higher the similarity between the two

items.

Fig 2: Hybrid recommendations

Firstly, content based recommendation is applied on the whole

dataset of the items resulting in a subset of similar items,

similar to the items the user already used/rated. These subsets

of similar items are then subjected to the item-item

collaborative filtering algorithm and the corresponding scores

are computed. Then finally, the hybrid scores of these items

are computed and sorted accordingly and then the top-N items

are recommended to the user.

Fig 3:Approaches considered for the proposed system

Green colour denotes the techniques used in the proposed

system,where red denotes techniques that are not injected in

the system.

Reasons to have chosen Item-Item CF over User-User CF:

● Works well with item-centric approach of the project

● Scales relatively better with increasing number of users

● Less space requirements than User-User CF

● Far easier to handle changing user preferences

Items can be recommended in two ways:

1. By Item-Top similar items of just the given item are

recommended.

2. By User -All the similar items of the user-rated items

are aggregated and then recommended.

There are many advantages of using a hybrid system over

choosing a specific algorithm only. As combining multiple

systems facilitates us to eliminate disadvantages in one system

by complimenting them with advantages of the other systems.

3.2 HIGH LEVEL ARCHITECTURE

Fig 4: Proposed System Architecture

3.3 PROCESS

The above figure represents the high-level architecture of the

project. Here users can perform four key operations. They are:

1.Get similar items.

2. Get user recommendations.

3.Adding rating to an item by a user.

4.Searching for an item by a user.

Recomme

ndation
Technique

s
Neighbour

hood
Based

Content
Based

Collaborati
ve Based

User-User

CF

Item-Item

CF

Prediction

Based

1.If the user has used some item and just wants the

recommendations to be based upon just that one item, then the

user can use up this functionality by supplying just the

identifier (title or Id) of that product only.

2.If the user wants recommendations based on his whole user

profile, he can just choose this option resulting in

recommendations that take note of all his ratings

comprehensively.

3.If the user wants to add ratings to an item, then he/she can

do so by inputting the id and rating to be allocated. This

activity is then captured by the system in subsequent similarity

matrix computations and the user recommendations for the

user gets altered accordingly.

4.If the user wants to search for an item in the item catalog,

then it can be done so by inputting the search term along with

userId.The search results for each user differ even for a same

search term as this results also factor in the user’s profile

along with search term provided at that instant.

Structure Of Item:

● Each item is stored as vector of user-ratings

● Stored in the format of python dictionary

Eg: HarryPotterBook:{Bhaskar : 5,RajShekar: 2.5,Naveen:

4,Priyanka: 3}

● Stored in such a way as a user will not rate all products

available in the store, saving space.

Item-Item similarity score computation:

● Similarity score is computed using Cosine similarity

● Here A and B are item vectors.

● We can use the Cosine Similarity algorithm to work out

the similarity between two things. We might then use the

computed similarity as part of a recommendation query.

● Higher the similarity score, greater the similarity.

● Score ranges from 0 to 1.

Item and User ratings :

Table 1.Item and its user ratings

Item/User RajShekar Priyanka Naveen Bhaskar

HarryPotter 2 3 4 5

Marvel Comics 4 4 1 1

Narnia 2 4 3 4

Naveen and Bhaskar seem to like HarryPotter and

Narnia,whereas not like Marvel Comics at all.This pattern is

captured by the system by making use of similarity matrices to

recommend items to the users in the future.

Similarity Matrix :

Table 2. Similarity matrix generated using cosine similarity

Book HarryPotter Marvel Comics Narnia

HarryPotter 1 0.68 0.98

Marvel Comics 0.68 1 0.56

Narnia 0.98 0.56 1

Since HarryPotter is more similar to Narnia the score (0.98)

is more for them,whereas HarryPotter is not so similar to

Marvel Comics ,the score(0.68) is relatively less when

compared to the former.

Ranking items by aggregating similarity scores per user:

● For each item that the user has rated ,individual

recommendations are generated.

● All these recommendations are clubbed together,resulting

in a final list of items to be recommended.

● Top N items from the final list are shown to the user.

Technical Optimizations:

● Missing data like summary and author details for a book

are fetched from public books API s.

● Some ratings in the dataset are padded with a constant

value to reduce bizarre scenarios.

● HashTables are used in the form of python dictionaries to

optimize similarity score computation time.

3.4 ALGORITHM:

● The program contains two processes running

simultaneously.These are:

1. On User Demand Process

2. Background Periodic Process

● The background periodic process affects the On User

Demand Process directly.

● Both these processes work hand in hand together to yield

fine tuned recommendations.

Fig 5: Processes in the system

On User Demand Process:

● It starts execution when the users select any feature in the

system and start interacting with the system.

● In this process,the various content based and collaborative

similarity matrices are fetched which are generated by the

periodic process.

● These similarity matrices are taken up and based on the

appropriate feature selected by the user,the corresponding

items are retrieved.

● Top N similar items to a given item/user are filtered using

CFR Score from all the products.

● These top N items are sorted using their corresponding

CBR score.

● Then out of them,top K items are filtered and sorted using

hybrid score computed.

● Then these sub items are shown as recommendations

on the screen.

Fig 6: Steps involved in User Demand Process

● With every step execution ,the no. of candidate items

for recommendations are reduced by an order of 10.

Fig 7. Order of shrinking of recommendations with each steps

Periodic Process:

● This process starts its execution when the server is first

started on.

● It runs once in a while, like once in a day as it is a very

computationally expensive process.

● It is responsible for generating similarity scores and

updating similarity matrices accordingly.

● These similarity scores are computed with the help of

item vectors which are generated inturn using the

underlying dataset.

Fig 8: Flow of periodic process

PseudoCode:

def getItemRecommendations(userId,num_of_items=100):

 user=getUser(userId)

 sim_items={}

 for itemId in user['ratings'].keys():

Fine tuned recommendations

Periodic
Process

On User
Demand
Process

Top N
similar

items to
a given

item/use
r are

filtered
using CFR

Score

Items are
sorted

based on
CBR

score

Top K
items are
filtered

and
sorted
using

Hybrid
Score &
rating

Recomm
endation

s are
shown

10000 1000
100 10

Item Vectors
are

constructed
using dataset

Item-Item
similiarity

computation
is performed

Similarity
matrixes are

updated

for itemId,cbr_score,cfr_score,matches,avg_rating in

getHybridSimilarItemsForAItem(itemId):

 if itemId in sim_items:

sim_items[itemId]+=cbr_score+cfr_score*matches*avg_ratin

g

else:

sim_items[itemId]=cbr_score+cfr_score*matches*avg_rating

 sim_items_list=[]

 for itemId,score in sim_items.items():

 sim_items_list.append((itemId,score):

 sim_items_list.sort(key=lambda x: (x[1]),reverse=True

 return sim_items_list[:num_of_items]

end procedure

getItemRecommendations(userId): It generates item-

recommendations to users.

The function getUser(userId) gets the user profile of the user

with specified userId.

The function get HybridSimilarItemsForAItem(itemId) gets

the most similar items to the item identified by itemId based on

the hybrid scores computed internally beforehand.

4. RESULTS

DataSet used: Book-Crossing Dataset

(http://www2.informatik.uni-freiburg.de/~cziegler/BX/)

The Book-Crossing dataset comprises 3 tables.

1.BX-Users

This file contains data about the users. Note that user IDs are

anonymized and map to integers. Demographic data is

provided like location and age. Otherwise, these fields contain

NULL-values.

Entries-2,60,000

2.BX-Books

Books are identified by their respective ISBN. Invalid ISBNs

are removed from the dataset. The file contains columns

(`Book-Title`, `Book-Author`, `Year-Of-Publication`,

`Publisher`,’Genre’,’Description’), obtained from Amazon Web

Services. In the case of several authors, only the first author

details are provided.

Entries-15,450

3.BX-Book-Ratings

Contains the book rating information. Ratings are expressed

on a scale from 1-10, higher values denoting higher

appreciation.

Entries- 10,48,574

4.1 Item Recommendations For A User

User with an user-id 9 is presented below,we can notice that

the user is religious by the fact that the user has used

‘Testament’ and ‘Beloved’.

Observation: Directly similar books of type novels and of

fiction and juvenile fiction genre are recommended similar to

users previously used items.

Hybrid recommendations are generated by including both

CBR and CFR recommendations.Mostly religious and fiction

novels are recommended as we can see that “Saving Faith” ,

“The Last Supper” and “Good Omens ” are listed in Hybrid

recommendations.

4.2 Getting similar items

The item that the user selected for recommending similar

items deals with court-trial genre.

The CBR recommendations also seem to recommend titles

relating to court genres like “Protect and Defend”,”The Final

Judgement”,”The Laws Of Our Fathers”.

It can be noticed that hybrid recommendations seem to

retrieve titles that are indirectly related to court trial and

biography genres whereas CBR and CFR are only able to

capture very direct mappings.

4.3 Adding ratings to items by users

The user with user id 9 as of now has a profile incling to

religious category.

Let us try adding ratings to science fiction titles like Star Wars

by user id 9.This act intends to make the user more of a Star

Wars person.

Now trying to get recommendations for user with user-id 9

will result as in next shown:

Now users get recommendations tending to fiction genre

especially movies from the Star Wars franchise that the user

has not yet used.

Users get recommendations tending to fiction and some other

unexplored genres that relate to Action using Hybrid

Algorithm.

4.4 Searching for item

Searching for ‘star’ by user with user id - 9

Since the user has previously rated items relating to the Star

Wars franchise, the search term star results in search results

including Star Wars titles.

Now let’s search the same term ‘star’ using the user id 56

Even though the same search term is used, different search

results are shown.The user with user-id 56 is more of a

Vampire and fictional stories person and so the star term

results in titles tending to vampire category titles that relate to

star entity.

4.5 Performance Analysis

Graph1: Convergence score trend

Convergence score is a quantitative measure denoting the

factor of convergence of content based and collaborative

filtering recommendations into hybrid recommendations.

It ranges from 0 to 1. Higher the score, higher the accuracy of

recommendations.

It is observed that as the no. of previously used items by a

user increases the convergence score tends to approach 1 and

the algorithm seems to yield accurate recommendations.

5. CONCLUSION

Generalized approach to recommendations resulted in the

system working well with wide range of domains and datasets.

The system proposed was able to mix functionality of two

popular recommendation algorithms with complementing

features thereby making the recommendations work better

even with less data and reduced the response time for

generating recommendations considerably alongside working

smoothly across different domains and datasets.

Items available in the catalog are prone to increase

exponentially with more and more users and providers getting

interconnected on a daily basis in large numbers. And so the

energy and time to be spent on the platform to choose a item

by the user gets increased thereby reducing the quality of user

experience, ultimately leading to the event where the user

doesn’t use any item.And so there is an ever-growing need of

recommendation systems that are better suitable to different

domains and datasets ranging from music,movies,shopping

data.There is an ever-growing need for recommendation

systems that are better suitable to different domains.

6. FUTURE WORK

User-User following subsystems can be implemented thereby

making use of human intelligence along with machine

intelligence. Trends in the overall system can be detected

thereby amplifying the quality of recommendations.

Item embeddings can be used in composition with the hybrid

system for even better similarity score computation.

Computation of items and users can be done remotely on a

Hadoop server thereby reducing the initial load time and

increasing performance of the overall system with incoming

stream of user ratings and new product registrations.

A questionnaire can be shown to the user periodically

depending upon the user’s changing preferences of the items

to better estimate the user’s present likings in the user profile

generated.

REFERENCES:

[1] Badrul Sarwar, George Karypis, Joseph Konstan, and John

Riedl Item-Based Collaborative Filtering Recommendation -

2001.

[2] Isinkaye, F.O.; Folajimi, Y.O.; Ojokoh, B.A Isinkaye,

F.O.; Folajimi, Y.O.; Ojokoh, B.A Recommendation systems:

Principles, methods and evaluation- -2015.

[3] Greg Linden, Brent Smith, and Jeremy York-

Recommendations Item-to-Item Collaborative Filtering- 2001

[4] F. Ricci, L. Rokach, B. Shapira, Recommender Systems

Handbook, Springer US, Boston, MA, 2011, Ch. Intro-

duction to Recommender Systems Handbook, pp. 1–35.

[5] J.B. Schafer, J.A. Konstan, and J. Reidl, “E-Commerce

Recommendation Applications,” Data Mining and Knowledge

Discovery, Kluwer Academic, 2001.

[6] K. Goldberg et al., “Eigentaste: A Constant Time

Collaborative Filtering Algorithm,” Information Retrieval J.,

vol. 4, no. 2, July 2001.

[7] Hongyan Liu, Jun He, Tingting Wang, Wenting Song,

Xiaoyang Du, “Combining user preferences and user opinions

for accurate recommendation”, Elsevier Journal- Electronic

Commerce Research and Applications 12 (2013)

[8] Adomavicius, G., and Tuzhilin, A. Toward the next

generation of recommender

systems: a survey of the state-of-the-art and possible

extensions. IEEE Transactions on Knowledge and Data

Engineering, 17, 6, 2005, 734–749.

[9] Adomavicius, G., and Kwon, Y. New recommendation

techniques for multi-criteria

rating systems. IEEE Intelligent Systems, 22, 3, 2007, 48–55.

[10]Adomavicius, G., Manouselis, N., and Kwon, Y. Multi-

criteria recommender systems.

In F. Ricci, L. Rokach, and P. B. Kantor (eds.), Recommender

Systems Handbook: A Complete Guide for Research

Scientists and Practitioners, Springer, New York, NY,

2010.

[11] Aggarwal, C., and Zhai, C. Mining Text Data. Springer,

New York, NY, 2012.

[12] Alexander, P., and Patrick, P. Twitter as a corpus for

sentiment analysis and opinion

mining. In Proceedings of the Seventh Conference on

International Language Resources and Evaluation, Valetta,

Malta, 2010.

[13] Ali, K., and Van Stam, W. TIVo: Making show

recommendations using a distributed collaborative filtering

architecture. In Proceedings of the Tenth ACM

SIGKDDInternational Conference on Knowledge Discovery

and Data Mining, Seattle, WA,2004, 394–401.

[14] Benamara, F., Cesarano, C., Picariello, A., Reforgiato,

D., and Subrahmanian, V.Sentiment analysis: Adjectives and

adverbs are better than adjectives alone. In Proceeding of

International Conference on Weblogs and social media, March

2007, San Jose, CA, 2007,1–7.

[15] Bennett, J., and Lanningm, S. The Netflix prize. In

Proceedings of 2007 KDD Cup and

Workshop, San Jose, CA, 2007.

[16] Billsus, D., and Pazzani, M. J. Learning collaborative

information filters. In Proceedings of the Fifteenth

International Conference on Machine Learning,Morgan

Kaufmann, San Francisco, CA, 1998, 46–54.

[17] Breese, J. S., Heckerman, D., and Kadie, C. Empirical

analysis of predictive algorithms

for collaborative filtering. In Proceedings of the Fourteenth

Conference onUncertainty in Artificial Intelligence, Morgan

Kaufmann, San Francisco, CA,1998, 43–52.

[18] Christiane, F. WordNet: An Electronic Lexical Database.

MIT Press, Cambridge, MA,

1998.

[19] Ding, X., and Liu, B. The utility of linguistic rules in

opinion mining. In Proceedings of

the 30th Annual International ACM SIGIR Conference on

Research and Development in Information Retrieval,

Amsterdam, Netherlands, July 23–27, ACM Press, New

York, NY, 2007, 811–812.

[20] Dong, Z., and Dong, Q. HowNet Knowledge Database.

2010. Available at www.keenage.com/html/c_index.html.

Gamon, M., Aue, A., Corston-Oliver, S., and Ringger, E.

Pulse: Mining customer opinions from free text. In

Proceedings of the 6th International Symposium on

Intelligent Data Analysis, Madrid, Spain, September 8–10,

2004, Lecture Notes in Computer Science, 3646, Springer

Verlag, New York, NY, 2005, 121–132.

[21] Ge, Y., Xiong, H., Tuzhilin, A., Xiao, K., Gruteser, M.,

and Pazzani, M. J. An energyefficient mobile recommender

system. In Proceedings of the 16th ACM SIGKDD

International Conference on Knowledge Discovery and Data

Mining, Washington, DC, July 25–28, 2010, ACM Press, New

York, NY, 2010, 899–907.

