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Abstract. Data clustering is frequently utilized in the early stages of 

analyzing big data. It enables the examination of massive datasets 

encompassing diverse types of data, with the aim of revealing 

undiscovered correlations, concealed patterns, and other valuable 

information that can be leveraged. The assessment of algorithms designed 

for handling large-scale data poses a significant research challenge across 

various fields. Evaluating the performance of different algorithms in 

processing massive data can yield diverse or even contradictory results, a 

phenomenon that remains insufficiently explored. This paper seeks to 

address this issue by proposing a solution framework for evaluating 

clustering algorithms, with the objective of reconciling divergent or 

conflicting evaluation outcomes. “The multicriteria decision making 

(MCDM) method” is used to assess the clustering algorithms. Using the 

EDAS rating system, the report examines six alternative clustering 

algorithms “the KM algorithm, EM algorithm, filtered clustering (FC), 

farthest-first (FF) algorithm, make density-based clustering (MD), and 

hierarchical clustering (HC)”—against, six clustering external measures. 

The Expectation Maximization (EM) algorithm has an ASi value of 

0.048021 and is ranked 5th among the clustering algorithms. The Farthest-

First (FF) Algorithm has an ASi value of 0.753745 and is ranked 2nd. The 

Filtered Clustering (FC) algorithm has an ASi value of 0.055173 and is 

ranked 4th. The Hierarchical Clustering (HC) algorithm has the highest 

ASi value of 0.929506 and is ranked 1st. The Make Density-Based 
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Clustering (MD) algorithm has an ASi value of 0.011219 and is ranked 

6th. Lastly, the K-Means Algorithm has an ASi value of 0.055376 and is 

ranked 3rd. These ASi values provide an assessment of each algorithm's 

overall performance, and the rankings offer a comparative analysis of their 

performance. Based on the result, we observe that the Hierarchical 

Clustering algorithm achieves the highest ASi value and is ranked first, 

indicating its superior performance compared to the other algorithms.   

Keywords: Data clustering, entropy, purity, Rand index, and MCDM.  

1 Introduction 

Clustering is commonly used in the early stages of big data analysis to partition large 

datasets into smaller segments. This division allows for easier comprehension and 

management of the data, facilitating subsequent analytical operations [1]. Choosing the 

right clustering algorithm is “crucial for handling large-scale data and evaluating the 

performance of clustering algorithms” is an ongoing and important concern in various 

fields, including fuzzy set theory, genomics, data mining, computer science, machine 

learning, business intelligence, and financial analysis [2]. Researchers and professionals 

from diverse fields such as computer science, economics, political science, bioinformatics, 

sociology, and others often engage in discussions to evaluate the potential advantages and 

disadvantages of analyzing these data to aid decision-making. However, the decision-

making process is highly intricate due to the presence of conflicting interests among 

multiple stakeholders and the complexity of the systems involved [3,4]. Clustering 

algorithms are unsupervised machine learning algorithms that operate without prior 

information. They divide the original data space into smaller segments based on high 

dissimilarities between groups and high similarities within groups. Clustering is a versatile 

technique that can be applied to process large-scale data of different types, aiming to 

discover previously unknown correlations, hidden patterns, and potentially valuable 

information [5,6]. To uncover the valuable insights concealed within location data, 

researchers often rely on clustering learning algorithms, which are widely employed in 

various studies. Cluster analysis, also referred to as group analysis, serves as not just a 

statistical method for investigating classification problems (such as samples or indices), but 

also as a vital algorithm in the field of data mining. Cluster analysis encompasses several 

patterns, with a pattern typically representing a measurement vector or a point within a 

multi-dimensional space [7]. Cluster analysis relies on the concept of similarity, where 

patterns within a cluster exhibit higher similarity compared to patterns outside the cluster. 

Clustering analysis algorithms can be categorized into different types, including partition 

methods, hierarchical methods, density-based methods, grid-based methods, and model-

based methods. These algorithms employ various techniques to group similar patterns 

together and distinguish them from dissimilar patterns [8]. 

2 Clustering Algorithms 

Clustering algorithms are commonly categorized into four main classes: partitioning 

methods, hierarchical methods, density-based methods, and model-based methods. 

Numerous classic clustering algorithms have been introduced and studied, including the K-

means algorithm, k-medoid algorithm, expectation maximization (EM), and frequent 

pattern-based clustering algorithms [9]. This research paper focuses on an empirical study 
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involving six influential clustering algorithms: “KM algorithm, EM algorithm, filtered 

clustering (FC), farthest-first (FF) algorithm, make density-based clustering (MD), and 

hierarchical clustering (HC)”. These algorithms can be implemented using “the WEKA 

software” [10]. 

2.1 KM algorithm 

It is a well-known unsupervised learning method primarily employed for categorizing 

samples (n) into k distinct categories. The algorithm begins by inputting n samples and 

specifying the desired number of categories, k. Initially, k points are randomly selected 

from the n samples as the initial cluster centers. Subsequently, the algorithm computes the 

distances between the n samples and the k cluster centers, assigning each sample to the 

nearest cluster center. The algorithm then calculates “the average of all samples within each 

cluster to obtain new cluster centers”. This process is repeated iteratively while assessing a 

criterion function. The algorithm continues until the clustering result aligns with the 

specified criterion function, yielding the final clustering outcome [11]. 

2.2 EM algorithm 

It is a versatile technique used to estimate maximum likelihood in scenarios involving 

missing values or latent variables. It is particularly useful for mixture models, where an 

observed data set of a random variable Y is classified into mixture components based on 

probabilities. The fundamental concept underlying this algorithm is the assumption that the 

dataset originates from an unobservable discrete random variable U, which signifies the 

mixture component responsible for generating each observation yi. The algorithm 

iteratively fits these probabilities, updating them in each iteration until a convergence 

criterion is met [12]. 

2.3 Filtered clustering (FC) 

Filtered clustering is a data mining and machine learning technique that aims to identify 

and group similar objects or data points using specific filtering criteria. It is a modified 

version of traditional clustering algorithms that incorporates additional constraints or filters 

during the clustering process. Filtered clustering applies the filtering criteria to the data 

points either before or during the clustering process, effectively excluding certain objects 

from consideration. These filters can be based on specific attributes, ranges, or patterns 

observed in the data. The primary objective of filtering is to narrow down the scope of the 

clustering algorithm to a subset of the data that satisfies predetermined conditions, thereby 

enhancing the accuracy and relevance of the resulting clusters [13]. 

2.4 Farthest-first (FF) algorithm  

FF, “a powerful greedy permutation method in computational geometry”, involves 

traversing a sequence of points in space with a stochastic starting point and selecting 

subsequent points that are as distant as possible from the previously chosen to set of points. 

In the context of clustering, FF clustering applies the FF traversal technique to optimize K-

means. It starts by selecting centroids and then assigns samples to clusters based on 

maximum distance. Specifically, k centroids are generated by stochastically selecting a data 

point as the first centroid and greedily choosing the second centroid that is farthest from the 

first. This process is repeated k times. Once all centroids are determined, FF assigns the 
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remaining data to the cluster that has the closest feature distance. Unlike K-means, FF only 

requires one traversal to cluster the data. The cluster centers are actual data points, and their 

positions remain fixed throughout the computation. This approach typically accelerates the 

clustering process as it involves fewer reassignments and adjustments [14]. 

2.5 Make density-based clustering (MD) 

This algorithm effectively discerns regions of both high and low densities and can be 

applied to detect clusters of various shapes, including circular clusters. It doesn't necessitate 

predefining the number of clusters, and it is also capable of detecting outliers in the dataset. 

The density-based clustering algorithm relies on two parameters: the radius of influence or 

epsilon value and the minimum points condition, which determine the desired density 

parameter. To form a cluster, the algorithm initiates arbitrarily within a identified region 

and encompasses an area with an epsilon value (Eps = 0.02268) to include the minimum 

number of points [15]. 

2.6 Hierarchical clustering (HC) 

The process of training multiple models for subsets of related clients can be accomplished 

by clustering the model updates received from the clients. However, many unsupervised 

clustering algorithms require an a priori estimation of the number of clusters. Since it is not 

possible to know how many unique data-generating distributions the clients' datasets are 

drawn from, it becomes necessary to use a clustering algorithm that can autonomously 

determine the number of clusters. Nonetheless, some clustering methods that automatically 

determine the number of clusters fail to assign outlier samples to a cluster and label them as 

noise (such as DBSCAN). In this scenario, hierarchical clustering emerges as a suitable 

choice for clustering when the number of clusters is unknown, as it assigns all examples to 

the most relevant cluster. Another advantage of using hierarchical clustering is its capability 

to handle large numbers of samples and clusters while also providing reasonable 

interpretability [16]. 

External measures for evaluating clustering results are considered more effective compared 

to internal and relative measures. In this particular study, six external measures for 

clustering evaluation are chosen. These measures include “entropy, purity, Rand index (RI), 

adjusted Rand index (ARI), Fowlkes-Mallows index (FMI), and Jaccard coefficient (JC)”. 

Notably, entropy and purity measures are extensively used as external evaluation metrics in 

the fields of data mining and machine learning [17]. 

2.7 Entropy 

Entropy can serve as a metric for “evaluating the effectiveness of a clustering algorithm”. 

When applied to clustering, entropy measures the level of uncertainty or randomness in 

“the assignment of data points to clusters”. A lower entropy value indicates higher purity 

and greater separation among clusters, whereas a higher entropy indicates more mixed and 

less distinct clusters. The entropy value typically falls within the range of 0 to log2(C), 

where C represents the number of clusters. A lower entropy value signifies better separation 

and clearer boundaries between clusters, while a higher entropy value suggests increased 

overlap or blending between clusters. 
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2.8 Purity 

Purity serves as another measure for “evaluating the efficacy of a clustering algorithm”. It 

quantifies the degree to which the resulting clusters align with the true class labels or 

ground truth of the data points. To compute the purity of a clustering solution, each cluster 

is assigned to the majority class among its “data points”. Purity is a straightforward and 

easily interpretable metric, particularly when the ground truth labels are available. 

However, it does not take into account the structure or density of the clusters and may not 

be suitable for all clustering scenarios. Therefore, it is often employed in conjunction with 

other evaluation metrics to obtain a more comprehensive understanding of the clustering 

algorithm's performance. 

2.9 Rand index (RI) 

The Rand index (RI) is a widely used metric for evaluating clustering algorithms, which 

measures the similarity between the clustering solution and the true class labels or ground 

truth of the data points. It assesses the level of agreement between pairs of data points in 

terms of their assigned clusters. To compute the Rand index, each pair of data points in the 

dataset is considered, and their clustering assignments are compared to the true class labels. 

The RI is calculated based on the number of agreements and disagreements between these 

assignments. It's important to note that the Rand index is symmetrical, meaning it focuses 

on the overall agreement rather than the specific clustering assignments. 

2.10 Adjusted Rand index (ARI) 

It quantifies the level of agreement between the clustering solution and the true class labels 

or ground truth of the data points, while taking into account chance agreements. The ARI 

adjusts the Rand index (RI) by comparing the observed agreement between clustering 

assignments and true labels with the expected agreement under a random clustering model. 

This adjustment enables a more reliable assessment of clustering performance. “The ARI 

value ranges from -1 to 1, where a value of 1 indicates a perfect clustering solution” that 

precisely matches the true class labels. Conversely, a value close to 0 or 0 suggests a 

random clustering solution, while negative values indicate that the agreement between 

clustering and true labels is worse than random. It is important to note that while ARI is 

widely used, it does have limitations. For instance, ARI can be “influenced by the number 

of clusters or class labels in the dataset”, and it assumes that the true labels are known, 

which may not always be the case in unsupervised learning scenarios. 

2.11 Fowlkes–Mallow’s index (FMI) 

This is a widely used metric for evaluating clustering algorithms, especially when “the 

ground truth class labels are known”. It assesses the similarity between “the clustering 

solution and the true class labels” by considering both pairwise similarities and the assigned 

clusters. The FMI is derived from precision and recall measures and calculates the 

geometric mean of these two metrics to evaluate the clustering performance. The Fowlkes-

Mallows Index “takes values between 0 and 1, with a value closer to 1 indicating a higher 

similarity between the clustering solution and the true class labels”, while a value closer to 

0 suggests a lower similarity. It's important to note that the Fowlkes-Mallows Index 

assumes the availability of ground truth class labels and evaluates the agreement between 

the clustering and the true labels. It may not be suitable for scenarios where the ground 

truth is unavailable or when the clustering objective differs from the class labels. 
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2.12 Jaccard coefficient (JC) 

The Jaccard coefficient (JC) is not commonly employed for evaluating clustering 

algorithms. Typically utilized in set theory, the Jaccard coefficient primarily measures the 

similarity between sets or binary data. However, if the objective is to assess the similarity 

between two clustering solutions, the Jaccard coefficient can be used to compare the 

overlapping clusters. The Jaccard coefficient “ranges from 0 to 1, with a value of 1 

indicating a perfect agreement between the two clustering solutions”, while a value of 0 

signifies no agreement between the solutions. 

3 The EDAS Method 

“The EDAS (Evaluation based on Distance from Average Solution) method” is a decision-

making approach that assesses and ranks alternatives based on their performance across 

multiple criteria. It involves comparing the performance of each alternative to the average 

performance across the evaluated criteria [18]. In the EDAS method, performance metrics 

or indices are utilized to measure the performance of the alternatives. These metrics can 

encompass various criteria such as accuracy, efficiency, or effectiveness. The performance 

values of each alternative are then compared to the average performance across the 

evaluated metrics [19,20]. The EDAS method calculates two main metrics: “Positive 

Distance from Average (PDA) and Negative Distance from Average (NDA)”. The PDA 

quantifies the positive deviation of an alternative's performance from the average, 

indicating better performance. On the other hand, the NDA quantifies the negative 

deviation, signifying worse performance [22]. By considering both “positive and negative 

deviations from the average”, the EDAS method provides a comprehensive evaluation and 

ranking of alternatives. It assists decision-makers in identifying the alternatives with the 

best overall performance and supports them in making informed decisions “based on the 

relative distances of the alternatives from the average performance” [23].  

 

➢ Select the characteristics that best define the decision possibilities for the given 

decision problem. “The decision matrix X” is generated to show the performance 

of different options relative to specific criteria. 

X=x11x12⋯x1nx21x22⋯x2nx31x32⋯x3n     (1) 

 

➢ Weights for the criteria are expressed in equation 2. 

 

wj=[w1⋯wn], where j=1nw1⋯wn=1   (2) 

 

➢ The average result regarding all criteria must be computed using the formulas presented 

below, per the specification of the EDAS method: 

AVj=j=1nkijn           (3) 

 

➢ The positive distance from average (PDA) is expressed in equation 4. Here B is 

“Beneficial criteria”, and C is “non-beneficial criteria”. 

 

PDAij=max⁡(0,(xij-AVij)AVij                 ⎸j∈Bmax⁡(0,(AVij-xij)AVij                 ⎸j∈C  
  (4) 

 

➢ The negative distance from average (NDA) is expressed in equation 5. Here 

B is “Beneficial criteria”, and C is “non-beneficial criteria”. 
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NDAij=max⁡(0,(AVij-xij)AVij                ⎸j∈Bmax⁡(0,(xij-AVij)AVij                 ⎸j∈C  
  (5) 

 

➢ The equation 2 multiplied by 4 and 5 respectively is used to calculate the weighted 

sums of the positive and negative distances from the average solution for all 

alternatives. These weighted sums are then normalized to determine the final 

scores. 

 

SPi=j=1mwj×PDAij      (6) 

 

SNi=j=1mwj×NDAij      (7) 

 

➢ Equations 8 and 9 are used to “normalize the weighted sum of the positive and 

negative distances from the average solution” for all alternatives. 

 

NSPi=SPimaxi(SPi)       (8) 

   

NSNi=1-(SNimaxiSNi)      (9) 

➢ “The final appraisal score (ASi) for all alternatives” is determined by taking “the 

average of the normalized weighted sum of the positive and negative distances 

from the average solution” for each alternative. 

 

ASi=(NSPi+NSNi)2       (10) 

The best choice among the selective alternatives is determined by selecting the alternative 

with the highest appraisal score, where “the appraisal score for each alternative is between 

0 and 1” [24]. 

4 Analysis And Discussion 

Table 1. The starting values of the external evaluation measures 

 
 

Table 1 displays the initial values of external evaluation metrics for various clustering 

algorithms on a specific dataset. The metrics include “purity, entropy, Fowlkes-Mallows 

index (FMI), Rand index (RI), adjusted Rand index (ARI), and Jaccard coefficient”. These 

values offer an initial evaluation of each algorithm's clustering performance, facilitating 

comparison and comprehension of their respective qualities. 
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Figure 1. The starting values of the external evaluation measures 

 

Figure 1 showcases the initial values of external evaluation metrics for diverse clustering 

algorithms applied to a particular dataset. The metrics encompass “purity, entropy, 

Fowlkes-Mallows index (FMI), Rand index (RI), adjusted Rand index (ARI), and Jaccard 

coefficient”. These values enable an initial assessment of the clustering performance for 

each algorithm, aiding in the comparison and understanding of their individual qualities. 

 
Table 2. Positive Distance from Average (PDA) 

0.1011 0.0000 0.0000 0.0000 0.0000 0.0956 

0.0000 0.8794 0.2171 1.4444 0.2088 0.0000 

0.1150 0.0000 0.0000 0.0000 0.0000 0.1913 

0.0000 0.9578 0.2301 1.6667 0.2213 0.0273 

0.0696 0.0000 0.0000 0.0000 0.0000 0.0000 

0.1150 0.0000 0.0000 0.0000 0.0000 0.1831 

 

Table 2 showcases “the PDA (Positive Distance from Average) values” for various 

clustering algorithms applied to a particular dataset using the EDAS method. The PDA 

metric quantifies the positive deviation of each algorithm's performance from the average 

performance across the evaluated metrics. These PDA values enable an evaluation of each 

algorithm's relative performance compared to the average across the metrics, facilitating 

comparison and comprehension of their respective qualities using the EDAS method. 

 
Table 3. Negative Distance from Average (NDA) 

 
 

Table 3 displays the NDA (Negative Distance from Average) values for various clustering 

algorithms applied to a specific dataset using the EDAS method. The NDA metric 

quantifies the negative deviation of each algorithm's performance from the average 

performance across the evaluated metrics. These NDA values offer an evaluation of each 

algorithm's relative performance compared to the average across the metrics, indicating 

their respective negative deviations from the average. This information is derived using the 

EDAS method. 
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Table 4. Weight Distribution 

0.1667 0.1667 0.1667 0.1667 0.1667 0.1667 

0.1667 0.1667 0.1667 0.1667 0.1667 0.1667 

0.1667 0.1667 0.1667 0.1667 0.1667 0.1667 

0.1667 0.1667 0.1667 0.1667 0.1667 0.1667 

0.1667 0.1667 0.1667 0.1667 0.1667 0.1667 

0.1667 0.1667 0.1667 0.1667 0.1667 0.1667 
 

Table 4 illustrates the allocation of equal weights (0.1667) to various evaluation metrics, 

such as “purity, entropy, Fowlkes-Mallows index (FMI), Rand index (RI), adjusted Rand 

index (ARI), and Jaccard coefficient”, for different clustering algorithms applied to a 

specific dataset. This uniform weight distribution implies that each metric is considered 

equally important in evaluating the performance of these clustering algorithms on the 

dataset. 

 
Table 5. Weighted PDA 

0.01684 0.00000 0.00000 0.00000 0.00000 0.01594 0.03278 

0.00000 0.14656 0.03619 0.24074 0.03479 0.00000 0.45829 

0.01917 0.00000 0.00000 0.00000 0.00000 0.03188 0.05104 

0.00000 0.15963 0.03835 0.27778 0.03688 0.00455 0.51720 

0.01160 0.00000 0.00000 0.00000 0.00000 0.00000 0.01160 

0.01917 0.00000 0.00000 0.00000 0.00000 0.03051 0.04968 

 

Table 5 displays the Weighted PDA (Positive Distance from Average) values for various 

clustering algorithms applied to a specific dataset. The Weighted PDA metric incorporates 

the weighted positive deviations of each algorithm's performance from the average 

performance across the evaluated metrics. These Weighted PDA values assess the relative 

performance of each algorithm by considering these weighted positive deviations from the 

average across the metrics. They provide valuable insights into the performance 

comparison of the algorithms in question. 
Table 6. Weighted NDA 

0.00000 0.07665 0.01882 0.12963 0.01792 0.00000 0.24302 

0.03136 0.00000 0.00000 0.00000 0.00000 0.06375 0.09512 

0.00000 0.08558 0.01739 0.12963 0.01570 0.00000 0.24829 

0.03542 0.00000 0.00000 0.00000 0.00000 0.00000 0.03542 

0.00000 0.05798 0.02167 0.12963 0.02281 0.01913 0.25122 

0.00000 0.08598 0.01666 0.12963 0.01525 0.00000 0.24753 

 

Table 6 displays the Weighted NDA (Negative Distance from Average) values for various 

clustering algorithms applied to a specific dataset. The Weighted NDA metric takes into 

account the weighted negative deviations of each algorithm's performance from the average 

performance across the evaluated metrics. These Weighted NDA values offer an evaluation 

of each algorithm's performance by considering the weighted negative deviations from the 

average across the metrics. They provide insights into the relative performance of each 

algorithm based on these weighted deviations. 
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Table 7. NSPi and NSNi 

Clustering Algorithms NSPi NSNi 

Expectation Maximization (EM) 0.063383 0.032658 

Farthest-First (FF) Algorithm 0.886103 0.621387 

Filtered Clustering (FC) 0.098692 0.011653 

Hierarchical Clustering (HC) 1 0.859011 

Make Density-Based Clustering 

(MD) 0.022438 0 

The K-Means Algorithm 0.096051 0.014701 

 

Table 7 presents the NSPi (Normalized Sum of Positive Indices) and NSNi (Normalized 

Sum of Negative Indices) values for different clustering algorithms. NSPi quantifies the 

normalized sum of positive performance deviations from the average, while NSNi 

quantifies the normalized sum of negative performance deviations from the average. These 

values provide insights into the relative performance of each algorithm based on their 

“positive and negative deviations from the average across the evaluated indices”. For 

instance, the Farthest-First (FF) Algorithm exhibits high NSPi and NSNi values, indicating 

“substantial positive and negative deviations from the average performance”, respectively. 

Conversely, the Make Density-Based Clustering algorithm displays relatively low NSPi 

and NSNi values, suggesting smaller deviations from the average performance. 

 

 
Figure 2. NSPi and NSNi 

 

Figure 2 displays the NSPi (Normalized Sum of Positive Indices) and NSNi (Normalized 

Sum of Negative Indices) values for various clustering algorithms. NSPi measures the 

normalized sum of positive performance deviations from the average, while NSNi measures 

the normalized sum of negative performance deviations from the average. These values 

offer insights into the relative performance of each algorithm based on their “positive and 

negative deviations from the average across the evaluated indices”. For example, the 

Farthest-First (FF) Algorithm exhibits high NSPi and NSNi values, indicating “significant 

positive and negative deviations from the average performance”, respectively. On the other 

hand, the Make Density-Based Clustering algorithm shows relatively low NSPi and NSNi 

values, suggesting smaller deviations from the average performance. 
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Table 8. Asi and Rank 

Clustering Algorithms ASi Rank 

Expectation Maximization (EM) 0.048021 5 

Farthest-First (FF) Algorithm 0.753745 2 

Filtered Clustering (FC) 0.055173 4 

Hierarchical Clustering (HC) 0.929506 1 

Make Density-Based Clustering (MD) 0.011219 6 

The K-Means Algorithm 0.055376 3 

 

Table 8 displays the ASi (the final appraisal score) and Rank values for various clustering 

algorithms applied to a specific dataset using the EDAS method. The ASi values represent 

the average summation of indices for each algorithm, indicating their overall performance. 

The Rank column shows the ranking of each algorithm based on their ASi values, with a 

lower rank indicating better performance. For instance, the Expectation Maximization (EM) 

algorithm has an ASi value of 0.048021 and is ranked 5th among the clustering algorithms. 

The Farthest-First (FF) Algorithm has an ASi value of 0.753745 and is ranked 2nd. The 

Filtered Clustering (FC) algorithm has an ASi value of 0.055173 and is ranked 4th. The 

Hierarchical Clustering (HC) algorithm has the highest ASi value of 0.929506 and is 

ranked 1st. The Make Density-Based Clustering (MD) algorithm has an ASi value of 

0.011219 and is ranked 6th. Lastly, the K-Means Algorithm has an ASi value of 0.055376 

and is ranked 3rd. These ASi values provide an assessment of each algorithm's overall 

performance, and the rankings offer a comparative analysis of their performance. Based on 

the result, we observe that the Hierarchical Clustering algorithm achieves the highest ASi 

value and is ranked first, indicating its superior performance compared to the other 

algorithms. 

 

 
Figure 3. ASi 

 

The ASi (the final appraisal score) values depicted in Figure 3 provide an overall 

assessment of the performance of each algorithm, considering various evaluation metrics. 

Algorithms with higher ASi values indicate better overall performance, while lower values 

suggest relatively lower performance. The ASi values offer insights into the overall 

performance of different clustering algorithms. Notably, the Hierarchical Clustering (HC) 

algorithm exhibits the highest ASi value of 0.929506, indicating superior overall 

performance compared to the other algorithms. The Farthest-First (FF) Algorithm also 

demonstrates a relatively high ASi value of 0.753745, suggesting strong performance. 

Conversely, the Make Density-Based Clustering (MD) algorithm exhibits the lowest ASi 
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value of 0.011219, indicating relatively weaker overall performance compared to the other 

algorithms. 

 

 
Figure 4. Rank 

 

Figure 4 provides the rankings of various clustering algorithms based on their ASi (Average 

Summation of Index) values. A lower rank signifies better performance, with the top-

ranked algorithm being the best performer. The Rank column offers a straightforward 

assessment of the relative performance of each algorithm based on their ASi values, 

enabling easy comparison and identification of the top-performing algorithms. The ranking 

order provides a representation of the relative performance, with the Hierarchical 

Clustering algorithm achieving the highest rank and the Make Density-Based Clustering 

algorithm obtaining the lowest rank. 

5 Conclusion 

Clustering algorithms have a crucial role in the field of machine learning and data analysis 

as they enable the grouping of similar data points based on their inherent characteristics. 

These algorithms aim to uncover patterns, structures, and relationships within datasets, 

without relying on pre-existing class labels or target variables. Prominent clustering 

algorithms like K-means, hierarchical clustering, DBSCAN, and Mean Shift offer distinct 

methods for partitioning data into meaningful clusters. By utilizing these algorithms, 

analysts and researchers can extract valuable insights from complex datasets, facilitating 

informed decision-making based on the identified patterns. The assessment of clustering 

algorithms is performed using the multicriteria decision making (MCDM) method. The 

report employs the EDAS rating system to assess six alternative clustering algorithms: 

“KM algorithm, EM algorithm, filtered clustering (FC), farthest-first (FF) algorithm, make 

density-based clustering (MD), and hierarchical clustering (HC)”. These algorithms are 

compared against six clustering external measures to determine their performance. The 

Hierarchical Clustering (HC) algorithm exhibits the highest ASi value of 0.929506, 

indicating superior overall performance compared to the other algorithms. The Farthest-

First (FF) Algorithm also demonstrates a relatively high ASi value of 0.753745, suggesting 

strong performance. Conversely, the Make Density-Based Clustering (MD) algorithm 

exhibits the lowest ASi value of 0.011219, indicating relatively weaker overall performance 

compared to the other algorithms. 
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