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Abstract. Human action recognition plays a crucial role in various 

applications, including video surveillance, human-computer interaction, 

and activity analysis. This paper presents a study on human action 

recognition by leveraging CNN-LSTM architecture with an attention 

model. The proposed approach aims to capture both spatial and temporal 

information from videos in order to recognize human actions. We utilize 

the UCF-101 and UCF-50 datasets, which are widely used benchmark 

datasets for action recognition. The UCF-101 dataset consists of 101 action 

classes, while the UCF-50 dataset comprises 50 action classes, both 

encompassing diverse human activities. Our CNN-LSTM model integrates 

a CNN as the feature extractor to capture spatial information from video 

frames. Subsequently, the extracted features are fed into an LSTM network 

to capture temporal dependencies and sequence information. To enhance 

the discriminative power of the model, an attention model is incorporated 

to improve the activation patterns and highlight relevant features. 

Furthermore, the study provides insights into the importance of leveraging 

both spatial and temporal information for accurate action recognition. The 

findings highlight the efficacy of the CNN-LSTM architecture with an 

attention model in capturing meaningful patterns in video sequences and 

improving action recognition accuracy. You should leave 8 mm of space 

above the abstract and 10 mm after the abstract. The heading Abstract 

should be typed in bold 9-point Arial. The body of the abstract should be 

typed in normal 9-point Times in a single paragraph, immediately 

following the heading. The text should be set to 1 line spacing. The 

abstract should be centred across the page, indented 17 mm from the left 

and right page margins and justified. It should not normally exceed 200 

words.  
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1 INTRODUCTION 

Human action recognition is a fundamental task in computer vision that involves 

automatically identifying and categorizing human activities from video sequences. CNN-

LSTM architectures have been widely used for human action recognition tasks as they can 

capture both spatial and temporal information from videos. However, the challenge lies in 

effectively learning discriminative features and patterns from video data, particularly in 

complex and cluttered scenes. 

 

To address this challenge, various approaches have been proposed, such as incorporating 

attention mechanisms, using different types of CNNs, and designing novel loss functions. 

In this research, we propose a CNN-LSTM architecture with an attention model to enhance 

the discriminative power of the model and improve action recognition accuracy. 

 

The attention model aims to highlight relevant features and improve the activation patterns 

of the model. It achieves this by incorporating a set of activation functions to learn the 

nonlinear relationships between features and actions. Traditional approaches to action 

recognition relied on handcrafted features and shallow learning algorithms, which often 

struggled to capture the complex spatio-temporal dynamics present in video data. CNNs 

excel at capturing spatial information from images, while LSTMs are well-suited for 

modeling temporal dependencies in sequential data. By combining these two powerful 

architectures, researchers have developed hybrid models that effectively capture both 

spatial and temporal cues in video sequences, leading to improved action recognition 

performance. 

 

In this study, we propose a CNN-LSTM model with an attention mechanism for human 

action recognition. The model aims to leverage the strengths of CNNs in capturing spatial 

information and LSTMs in modelling temporal dependencies. It also incorporates an 

attention model to enhance the discriminative power of the learned features. The activation 

model helps to emphasize relevant features and suppress irrelevant ones, leading to 

improved action recognition accuracy. 

 

To evaluate the proposed approach, we employ two widely used benchmark datasets: UCF-

101 and UCF-50. The UCF-101 dataset consists of videos belonging to 101 action classes, 

including activities such as basketball, biking, and golf swinging. The UCF-50 dataset, on 

the other hand, comprises 50 action classes, covering a diverse range of human activities. 

These datasets provide a challenging and diverse set of video sequences, enabling a 

comprehensive evaluation of our model's performance. 

 

Demonstration of the effectiveness of the attention model in improving the discriminative 

power of the learned features.The remainder of this paper is organized as follows: Section 2 

provides an overview of related works in the field of human action recognition using deep 

learning approaches. Section 3 describes the proposed CNN-LSTM model with the 

attention mechanism in detail. Section 4 presents the experimental setup, including dataset 

descriptions, evaluation metrics, and implementation details. Section 5 discusses and 
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analyzes the experimental results. Finally, Section 6 concludes the study and discusses 

potential future directions in the field of human action recognition. 

 

 

 

 

UCF-101 dataset 

The UCF-101 dataset is a widely used benchmark dataset for human action recognition 

tasks in computer vision research. It was introduced in 2012 by Khurram Soomro, Amir 

Roshan Zamir, and Mubarak Shah at the University of Central Florida. The UCF-101 

dataset consists of 13,320 videos, each depicting an action from one of 101 action classes. 

These action workshops include a wide range of human activities, including playing the 

guitar, horseback riding, and shooting hoops. Due to the numerous action classes and the 

high level of variability in the films, the UCF-101 dataset presents a challenge. The right 

action class is assigned to each video, and the dataset also includes a list of action 

characteristics that give more detailed information about the actions. A variety of human 

action recognition approaches, including traditional methods and deep learning methods 

have been rigorously tested on the UCF-101 dataset. It has evolved into a de facto industry 

benchmark dataset, and the usage of it has significantly advanced the study of human action 

recognition. 

 

UCF-50 dataset 

The UCF-50 dataset is a widely used benchmark dataset for human action recognition 

tasks. It was created by collecting video clips from YouTube and other online sources, and 

it comprises 50 action classes with approximately 25 clips per class. Both simple and 

complicated behaviours, such as leaping, waving, slamming the ball into the air, juggling a 

football, and riding a horse, are included in the UCF-50 dataset. There are 6,618 video 

segments totalling around 27 hours in the UCF-50 collection. The performance of various 

human action detection algorithms, notably deep learning methods like CNNs and LSTMs, 

has been extensively assessed using the UCF-50 dataset. The dataset provides a challenging 

benchmark for action recognition due to the high variability in actions, viewpoints, and 

environments. To evaluate the performance of action recognition algorithms on the UCF-50 

dataset, researchers often split the dataset into training and testing sets, with a commonly 

used split ratio of 80:20. Metrics including accuracy, precision, recall, and F1-score are 

used to assess the algorithms' performance. The UCF-50 dataset, which offers a difficult 

benchmark for assessing the performance of various algorithms, is generally a useful tool 

for researchers working in the field of human action recognition. 
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Fig 1 Dataset 

2 LITERATURE SURVEY 

Human action recognition is a challenging task in computer vision that has attracted 

significant research attention In this literature survey, we provide a comprehensive 

overview of recent advancements in human action recognition.Traditional methods for 

human action recognition often relied on handcrafted features such as Histogram of 

Oriented Gradients (HOG), Scale-Invariant Feature Transform (SIFT), and Local Binary 

Patterns (LBP).Although these methods achieved moderate success, they struggled to 

capture complex spatial and temporal patterns present in action sequences.The advent of 

deep learning revolutionized human action recognition by enabling the automatic learning 

of features from raw data [1]. CNNs can capture hierarchical representations of visual 

information and have demonstrated superior performance in image-based action recognition 

tasks.These models excel at modeling sequential data and have been successfully applied to 

human action recognitionIn addition to CNN-LSTM models, other deep learning-based 

architectures have been proposed for action recognition. 3D CNNs extend traditional CNNs 

to capture spatiotemporal features directly from video volumes. These models are capable 

of learning motion patterns and have achieved impressive performance in action 

recognition tasks. 

Attention mechanisms have also gained attention in human action recognition. By focusing 

on relevant spatial or temporal regions, attention mechanisms enhance the discriminative 

power of models. They have been applied to CNN-LSTM architectures, where they 

selectively attend to salient frames or regions within video sequences. Transfer learning has 

also been explored for action recognition. By leveraging the learned visual representations, 

this approach improves performance on limited action recognition datasets. Datasets such 

as UCF-101, HMDB-51, and Kinetics have played a crucial role in evaluating and 

comparing action recognition models [1]. These datasets contain a wide range of action 

categories and provide a benchmark for assessing model performance. Researchers have 

achieved significant advancements by training and evaluating their models on these 

datasets. In summary, human action recognition has witnessed remarkable progress due to 
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advancements in deep learning. CNNs, LSTMs, attention mechanisms, and transfer 

learning techniques have greatly improved the accuracy of action recognition models. 

Furthermore, benchmark datasets have facilitated fair comparisons and benchmarking of 

different approaches [3]. The field continues to evolve, with ongoing research focusing on 

developing robust models that can handle complex action scenarios, occlusions, and large-

scale datasets.Graph Convolutional Networks (GCNs) have been employed to capture the 

structural relationships between human body joints or key points. By modelling the spatial 

dependencies and interactions between body parts, graph-based models have shown 

promising results in recognizing actions that involve fine-grained motions and body 

configurations. 

Another direction of research involves incorporating spatial-temporal attention 

mechanisms. These mechanisms dynamically allocate attention to different spatial regions 

or temporal segments within videos, focusing on the most informative parts for action 

recognition. 

Action recognition with fewer and fewer shots has also gained attention. In scenarios 

where labelled data is scarce or completely absent for certain action categories, these 

approaches aim to recognize actions with limited or no training samples. Few-shot learning 

leverages a few labelled examples from one action category to generalize and recognize 

unseen instances, while zero-shot learning transfers knowledge from seen action categories 

to recognize unseen ones using semantic representations. Video-based action recognition 

has extended beyond single-stream models [4]. Two-stream models utilize separate streams 

of appearance and motion information, extracting features from RGB frames and optical 

flow fields, respectively. By combining the two streams, these models capture both 

appearance and motion cues, leading to improved performance in action recognition tasks. 

Domain adaptation and transfer learning techniques have been explored to address the 

domain shift problem in action recognition [5]. By leveraging knowledge from a source 

domain with sufficient labelled data to improve performance in a target domain with 

limited labelled data, these approaches aim to enhance the generalization capabilities of 

action recognition models across different settings or data distributions. End-to-end 

learning frameworks have also gained popularity, allowing the joint optimization of feature 

extraction and action classification. These frameworks eliminate the need for handcrafted 

feature engineering and enable the network to learn discriminative features directly from 

raw video data. Furthermore, the emergence of large-scale video datasets, such as Moments 

in Time and Something-Something, has provided researchers with more diverse and 

challenging data for action recognition [6]. These datasets encompass a wide range of 

daily-life actions, offering opportunities to explore and develop models that can recognize 

actions in real-world, dynamic environments. 

In conclusion, human action recognition has witnessed significant progress with 

advancements in deep learning, attention mechanisms, graph-based models, few-shot 

learning, domain adaptation, and large-scale datasets. These developments have paved the 

way for more accurate and robust action recognition systems, opening up possibilities for 

various applications such as surveillance, sports analysis, and human-computer interaction. 

The field continues to evolve, driven by the exploration of novel architectures, techniques, 

and datasets to improve the performance and generalization capabilities of action 

recognition models.Temporal modeling techniques have been a focus of research in action 

recognition. TCNs utilize dilated convolutions to capture long-range temporal dependencies 

efficiently, while Transformer models leverage self-attention mechanisms to model 

temporal relationships across video frames. Multi-modal action recognition has gained 

attention as well. Instead of relying solely on visual information, researchers have 

incorporated other modalities such as depth data from depth sensors or skeleton data 
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obtained from pose estimation techniques [2, 9]. These additional modalities provide 

complementary cues and improve the discriminative power of action recognition models. 

Weakly supervised learning methods have been explored to alleviate the need for frame-

level or segment-level annotations. These approaches aim to learn action representations 

using only video-level labels, where the temporal boundaries or locations of actions are 

unknown. Weakly supervised methods, such as Multiple Instance Learning (MIL) or 

attention-based pooling, enable models to discover discriminative temporal segments or 

frames without precise annotations. 

Action anticipation has emerged as a related research area, focusing on predicting 

actions before they occur. These models aim to forecast future actions based on observed 

video frames, enabling proactive decision-making in real-time applications. Action 

anticipation requires understanding the temporal dynamics and cues that precede an action, 

and it has found applications in video surveillance, autonomous systems, and human-robot 

interaction. 

The interpretability of action recognition models has also garnered attention. 

Researchers have explored methods to visualize and interpret learned representations and 

attention mechanisms within deep learning models. These techniques provide insights into 

which regions or frames contribute most to action recognition decisions, enhancing the 

transparency and trustworthiness of the models [8, 10]. 

Meta-learning or learning to learn has been applied to action recognition, enabling 

models to adapt quickly to new action categories or unseen scenarios with minimal training 

samples. Meta-learning frameworks leverage prior knowledge from multiple tasks to 

generalize and recognize new actions efficiently, making them suitable for scenarios with 

limited labeled data.Real-time action recognition has been an active research direction, 

focusing on developing lightweight and efficient models that can process video streams in 

real-time 

In summary, human action recognition research has seen advancements in various areas 

such as temporal modelling, multi-modal fusion, weakly supervised learning, action 

anticipation, interpretability, meta-learning, and real-time processing The field continues to 

evolve with ongoing research to address new challenges and explore emerging techniques 

for better understanding and recognition of human actions. 

Lightweight Action Recognition Architectures: The study focuses on developing a 

lightweight architecture for human action recognition using deep neural networks. The aim 

is to design an efficient model that can process RGB data and achieve accurate recognition 

results [11]. The emphasis on lightweight architectures addresses the need for real-time 

applications and resource-constrained environments. CNNs are powerful tools for 

extracting spatial features from input images, enabling the model to distinguish objects 

from the background. The use of CNNs highlights the effectiveness of deep learning in 

capturing discriminative features for action recognition tasks.Long Short-Term Memory 

(LSTM): LSTM units are incorporated into the architecture to capture temporal motion 

features[12]. By leveraging the temporal dependencies within action sequences, LSTM 

networks enable the model to understand the sequential nature of actions. The integration of 

LSTM units emphasizes the importance of considering temporal information for accurate 

action recognition. 

Temporal-Wise Attention Model: A temporal-wise attention model is introduced to 

identify the significant parts within frames that contribute to action recognition. This 

attention mechanism enhances the discriminative power of the model by focusing on the 

most informative regions or frames. The temporal-wise attention model allows the 

architecture to dynamically allocate attention and adaptively learn important temporal 

features. 
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Joint Optimization Module: The proposed architecture includes a joint optimization 

module that explores the intrinsic relations between the different LSTM features extracted 

from different CNN layers. This module aims to enhance the integration of spatial and 

temporal information for improved action recognition performance. By jointly optimizing 

the LSTM features, the model can effectively capture both the local and semantic 

characteristics of actions. 

Experimental Evaluation: The effectiveness of the proposed method is validated through 

extensive experimental evaluations. The results demonstrate the efficiency and accuracy of 

the architecture in recognizing human actions. The evaluation highlights the advantages of 

leveraging spatial and temporal information, as well as the effectiveness of the attention 

mechanism and joint optimization module.In summary, the literature work focuses on 

addressing the challenge of human action recognition by proposing a lightweight 

architecture based on deep neural networks [15]. The architecture combines CNNs for 

spatial feature extraction, LSTM units for temporal motion feature extraction, a temporal-

wise attention model for focusing on informative frames, and a joint optimization module 

for integrating spatial and temporal information. The experimental results demonstrate the 

efficiency and effectiveness of the proposed method in accurately recognizing human 

actions. 

Action Recognition in Robotics Systems: The study emphasizes the importance of 

action recognition in robotics systems. Accurate recognition of human actions is crucial for 

robots to understand and respond appropriately to human behaviors in various interactive 

scenarios [16]. By developing an efficient architecture specifically for robotics applications, 

the study addresses the need for real-time and lightweight action recognition models that 

can be deployed on robotic platforms. 

Spatial and Temporal Feature Fusion: The proposed architecture leverages both spatial 

and temporal features for robust action recognition. The CNN component captures spatial 

information by extracting local and semantic characteristics from the input RGB data. The 

LSTM units, on the other hand, capture temporal motion features by modeling the 

sequential dependencies within action sequences [17]. The fusion of spatial and temporal 

features allows the model to capture both appearance and motion cues, improving the 

discriminative power of the architecture. 

Attention Mechanisms in Action Recognition: The introduction of the temporal-wise 

attention model highlights the significance of attention mechanisms in action 

recognition[19]. By dynamically allocating attention to informative parts within frames, the 

attention model enhances the model's ability to focus on relevant regions and frames. This 

attention mechanism enables the architecture to selectively attend to crucial temporal cues, 

leading to improved recognition accuracy. 

Joint Optimization for Feature Integration: The inclusion of the joint optimization 

module demonstrates the importance of integrating different LSTM features extracted from 

different CNN layers. By jointly optimizing the features, the model can effectively capture 

both low-level and high-level representations of actions. This integration allows the 

architecture to leverage complementary information from multiple layers, enhancing the 

overall action recognition performance. 

Efficiency and Effectiveness of the Proposed Method: The experimental evaluation 

demonstrates the efficiency and effectiveness of the proposed architecture. The lightweight 

design enables real-time processing and efficient deployment on resource-constrained 

platforms [23]. The results show that the architecture achieves high recognition accuracy, 

validating the effectiveness of the spatial and temporal feature fusion, attention mechanism, 

and joint optimization module in improving action recognition performance. 

Comparison with Existing Methods: The study compares the proposed architecture with 

existing approaches for human action recognition. This comparison highlights the 
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advantages and contributions of the proposed method, such as its lightweight nature, 

incorporation of attention mechanisms, and joint optimization for feature integration. The 

comparison showcases the superiority of the proposed architecture in terms of accuracy, 

efficiency, and robustness.In conclusion, the literature work focuses on developing a 

lightweight action recognition architecture for robotics systems [20]. By combining spatial 

and temporal features, incorporating attention mechanisms, and applying joint optimization, 

the proposed method achieves accurate and efficient recognition of human actions. The 

study highlights the significance of action recognition in robotics and demonstrates the 

effectiveness of the proposed architecture through extensive experimental evaluations and 

comparisons with existing methods. 

 

3 METHODOLOGY 

In this section, we present the detailed methodology for human action recognition using a 

CNN-LSTM architecture with an attention model. The proposed methodology consists of 

several steps, including data preprocessing, feature extraction, model architecture design, 

training, and inference.In this section, we provide a comprehensive and detailed 

methodology for human action recognition using a CNN-LSTM architecture with an 

attention model [25]. Our proposed methodology encompasses various essential steps, such 

as data preprocessing, feature extraction, model architecture design, training, and inference. 

By following this methodology, we aim to achieve accurate and robust action recognition 

results. 

The first step in our methodology is data preprocessing. We begin by selecting the UCF-

101 dataset, which is widely recognized as a benchmark dataset for action recognition. This 

dataset contains videos of 101 action categories captured in diverse settings and view points 

[27]. To ensure consistency and optimal performance, we apply preprocessing techniques 

such as resizing the videos to a standardized resolution and normalizing pixel values. 

Additionally, we divide the dataset into training and testing subsets to facilitate model 

evaluation. 

By utilizing a pre-trained CNN, such as VGG or ResNet, we can capture discriminative 

visual information from the input frames. This process involves passing each frame through 

the CNN and obtaining high-dimensional feature vectors that encode spatial 

characteristics.By utilizing these two types of LSTM networks, we effectively capture both 

local and global temporal dependencies within action sequences [1]. 

We design the overall model architecture by fusing the outputs of the two LSTM networks, 

resulting in spatial-temporal features that comprehensively represent the actions [28]. We 

then integrate the attention model into the CNN-LSTM architecture, placing it after the 

LSTM layers. This integration allows the attention model to refine the extracted features 

and capture action-specific cues, further improving the models discriminative capabilities. 

Moving on to the training phase, we select an appropriate loss function, such as categorical 

cross-entropy, to optimize the model during training. This loss function measures the 
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discrepancy between the predicted action labels and the ground truth labels, guiding the 

model towards better performance. We employ optimization algorithms, such as stochastic 

gradient descent (SGD) or Adam, to update the model's parameters and ensure efficient 

convergence during training. To prevent overfitting and enhance generalization, we also 

apply regularization techniques like dropout or weight decay [5]. 

During inference, we evaluate the trained model on the testing subset of the UCF-101 

dataset. We feed video sequences into the model and obtain predicted action labels. By 

comparing these predictions with the ground truth labels, we assess the model's 

performance in terms of accuracy, precision, recall, and F1 score [32]. To further improve 

the model's performance, we explore fine-tuning techniques and transfer learning. Fine-

tuning involves training the model on additional labeled data or adjusting specific model 

layers to adapt to the target action recognition task. Transfer learning leverages knowledge 

learned from pre-trained models on similar tasks or datasets to enhance the model's 

performance. 

By following this comprehensive methodology, we aim to achieve accurate and robust 

human action recognition using a CNN-LSTM architecture with an attention model. Each 

step in the methodology has been carefully designed to ensure the efficient extraction of 

spatial and temporal features, incorporation of action-specific cues, and effective training 

and inference [34]. The proposed methodology serves as a guideline for researchers and 

practitioners interested in developing advanced models for human action recognition. 

 

 
 

Fig 2 Methodology 
 

DATASET SELECTION 

 We utilize the UCF-101 dataset, a widely used benchmark dataset for action recognition. 

The dataset contains videos of 101 action categories captured in various settings and 

viewpoints.For our research on human action recognition, we carefully select the UCF-101 

dataset as our benchmark dataset. The UCF-101 dataset is widely recognized and 

extensively used in the field of action recognition. It offers a comprehensive collection of 

videos depicting 101 different action categories, covering a diverse range of activities 

performed by humans[10]. 
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The dataset is curated to include videos captured in various settings and viewpoints, 

representing real-world scenarios. This diversity introduces challenges such as variations in 

lighting conditions, camera angles, and background clutter, making the dataset a suitable 

testbed for evaluating the robustness and generalization capabilities of action recognition 

models.The dataset provides a rich and representative sample of the types of actions 

encountered in real-world applications.The UCF-101 dataset offers a considerable number 

of videos for each action category, ensuring sufficient data for training, validation, and 

testing. This abundance of data allows for comprehensive analysis and evaluation of 

different action recognition approaches[15]. 

Moreover, the dataset provides ground truth labels for each video, indicating the 

corresponding action category. These labels serve as a reference for evaluating the 

performance of action recognition models. Researchers can compare the predicted action 

labels from their models against these ground truth labels to measure accuracy, precision, 

recall, and other evaluation metrics.The popularity and widespread usage of the UCF-101 

dataset have contributed to the development of numerous state-of-the-art action recognition 

models. Researchers can benchmark their models against existing approaches and evaluate 

their performance on a standardized dataset [31]. This facilitates fair comparisons and 

fosters advancements in the field by building upon previous work. The UCF-101 dataset is 

an ideal choice for our research on human action recognition. Its extensive collection of 

videos covering 101 action categories, diverse settings, and viewpoints provides a realistic 

and challenging dataset for evaluating the performance of action recognition models. The 

availability of ground truth labels ensures accurate evaluation and comparison of different 

approaches. By utilizing the UCF-101 dataset, we aim to contribute to the advancement of 

action recognition techniques and improve the understanding of human actions in various 

domains[12]. 

VIDEO PREPROCESSING 

Video preprocessing plays a crucial role in preparing the dataset for human action 

recognition. In this section, we describe the various steps involved in video preprocessing, 

which include resizing videos, and extracting the frames then normalize the pixels. 

Additionally, we discuss the extraction of optical flow fields or the use of precomputed 

flow fields to capture motion information [26]. 

Resizing Videos:  

To ensure consistency and optimize computational efficiency, we resize the videos in the 

dataset to a consistent resolution. By standardizing the video size, we create a level playing 

field for subsequent processing steps. This resizing step helps to alleviate the potential 

computational burden associated with varying video resolutions and facilitates efficient 

feature extraction [23]. 

Normalizing Pixel Values 
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 Normalization of pixel values is another important preprocessing step. By applying 

normalization techniques, such as mean subtraction or min-max scaling, we bring the pixel 

values of the videos to a common scale. This normalization process enhances the model's 

ability to learn meaningful features by reducing the impact of variations in lighting 

conditions and overall video brightness [27]. 

Splitting the Dataset  

 Splitting the data set into train and test validation is more importent processes. The 

splitting process ensures that the model is tested on unseen data, providing a reliable 

estimation of its performance[18]. 

Extraction of Optical Flow Fields 

Motion information is vital for accurate action recognition. To capture motion cues, we 

extract optical flow fields from the videos. Optical flow represents the apparent motion of 

objects in consecutive frames. By calculating the displacement of pixels between frames, 

we obtain a dense optical flow field that encodes motion information. This additional 

information aids the model in distinguishing different actions based on their dynamic 

properties [17]. 

Use of Precomputed Flow Fields 

 Alternatively, we can utilize precomputed flow fields for capturing motion information. 

Precomputed flow fields are computed offline using specialized algorithms, such as Dense 

Optical Flow or Flow Net. These flow fields are then stored and used as inputs during 

training and testing. Using precomputed flow fields reduces the computational overhead 

during training and inference, enabling faster processing and alleviating the need for online 

optical flow computation.The choice between extracting optical flow fields and using 

precomputed flow fields depends on the specific requirements of the action recognition task 

and the available computational resources. Both methods enable the model to capture 

temporal dynamics and incorporate motion information into the recognition process [34]. 

By performing video preprocessing steps like resizing, pixel value normalization, and 

dataset splitting, we create a standardized and optimized dataset for human action 

recognition. Additionally, the extraction of optical flow fields or the use of precomputed 

flow fields enhances the model's ability to capture and leverage motion information. These 

preprocessing steps lay the foundation for subsequent feature extraction and model training 

stages, contributing to the overall effectiveness and accuracy of the action recognition 

system. 
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Fig 3 Pre-Processing of Videos 

 

4 MODEL ARCHITECTURE 

CNN-LSTM Fusion 

We combine the outputs of the two LSTM networks from the previous step, resulting in 

fused spatial-temporal features. This fusion enables the model to capture spatial and 

temporal dynamics simultaneously, improving the overall representation of actions. The 

model architecture for human action recognition involves a crucial step called CNN-LSTM 

fusion. In this step, we combine the outputs of the two LSTM networks, which were 

previously applied to capture temporal information from different levels of spatial 

features.The fusion of these outputs results in fused spatial-temporal features, which are 

essential for effectively representing actions. By combining spatial and temporal dynamics, 

the model gains a comprehensive understanding of actions. being performed in the video 

sequences. The CNN component extracts spatial features from individual frames, using a 

pre-trained network such as VGG or ResNet [28]. These spatial features capture visual 

information and provide a representation of the objects and scenes present in the video 

frames.The LSTM networks, on the other hand, focus on capturing temporal dynamics by 

modeling sequential dependencies within action sequences. This fusion is crucial as it 

allows the model to leverage complementary information from the two LSTM networks 

and capture the complete context of the actions.By combining spatial and temporal features, 

the model architecture achieves a more robust and comprehensive representation of actions. 

It becomes capable of understanding not only the appearance of objects and scenes but also 

the dynamic aspects and temporal variations within action sequences. This fused 

representation of spatial-temporal features enables the model to better discriminate between 

different actions and improves overall recognition performance. It enhances the model's 

ability to capture complex and subtle variations in actions, leading to more accurate 

predictions. 

The CNN-LSTM fusion in the model architecture demonstrates the importance of 

integrating spatial and temporal information for effective action recognition. By leveraging 

both spatial and temporal dynamics, the model can capture the nuanced characteristics of 

actions and make informed decisions about the actions being performed in the video 

sequences. 

The integration of the attention model into the CNN-LSTM architecture is achieved by 

connecting it after the LSTM layers. The output from the LSTM layers serves as input to 

the attention model, allowing it to analyze and refine the extracted features. This integration 

facilitates the fusion of the temporal information captured by the LSTM layers with the 

action-specific cues provided by the attention model. The refined features obtained from the 

attention model are then used for the final classification task. The fused features, enriched 
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with action-specific cues and refined temporal dynamics, enhance the discriminative power 

of the architecture in distinguishing between different action categories accurately. To train 

the integrated model, we employ appropriate loss functions such as categorical cross-

entropy, which measure the discrepancy between the predicted action labels and the ground 

truth labels. Optimization algorithms like stochastic gradient descent (SGD) or Adam are 

utilized to update the model's parameters during the training process. Regularization 

techniques, such as dropout or weight decay, may be applied to prevent over fitting and 

improve generalization. 

 
 

Fig 4 Model Architecture 

 

TRAINING: 

Loss Function Selection:  

During the training phase of the proposed human action recognition model, several key 

steps are undertaken to optimize the model's performance and improve its generalization 

capabilities. One crucial aspect is the selection of an appropriate loss function. We choose 

the categorical cross-entropy loss function, which is commonly used for multi-class 

classification tasks. This loss function quantifies the difference between the predicted 

action labels and the ground truth labels associated with each video sequence. By 

minimizing this discrepancy, the model learns to accurately classify actions and improves 

its overall performance. 

To mitigate the risk of overfitting, we incorporate regularization techniques during training. 

Dropout, a widely adopted regularization method, is applied to randomly deactivate a 

fraction of the neurons in the network during each training iteration [23]. This prevents the 

model from relying too heavily on specific neurons and encourages the learning of more 

robust and generalized features. Another regularization technique we employ is weight 

decay, which adds a penalty term to the loss function to discourage large weight values. 

This helps prevent the model from becoming overly sensitive to individual data samples 
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and improves its ability to generalize to unseen data. This process aims to find the optimal 

parameter values that minimize loss, and improve the model's ability to accurately classify 

actions. 

During training, we carefully monitor the model's performance using validation data. This 

enables us to track training progress and make adjustments as necessary. If the model's 

performance plateaus or starts to degrade, we may employ techniques such as learning rate 

scheduling or early stopping to enhance training effectiveness. The training process 

involves iterating over the training data multiple times [21], or epochs. This ensures the 

model learns from a diverse set of samples and generalizes well to unseen data. Each 

training iteration involves forwarding video sequences through the model, computing the 

loss, and updating the model's parameters through back propagation. 

To further enhance the model's performance, we explore techniques such as fine-tuning and 

transfer learning. Fine-tuning involves training the model on additional labeled data or 

adjusting specific layers to adapt the model to the target action recognition task [8]. 

Transfer learning leverages knowledge learned from pre-trained models on similar tasks or 

datasets to initialize the model's weights or specific layers. 

By carefully selecting the loss function, applying regularization techniques, and optimizing 

the model's parameters, our training methodology ensures that the CNN-LSTM with 

Activation model is effectively trained for human action recognition. The model learns to 

minimize loss, generalize well to unseen data, and accurately classify actions in video 

sequences.       

 

Fig 5 graph of accuracy vs val_accuracy of the model 
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5 RESULTS 

In this section, we present the results of our proposed method for human action recognition 

using the CNN-LSTM with attention model. We conducted extensive experiments on a 

benchmark dataset, evaluating the performance in terms of recognition accuracy and 

comparing it with baseline models. The experiments were performed on a high-

performance computing system, ensuring consistent and reliable computational resources. 

Evaluation Metrics: We employed the standard metrics for action recognition evaluation, 

including accuracy, precision, recall, and F1 score. Accuracy measures the overall 

correctness of action recognition predictions, while Precision and recall assess performance 

in individual action categories. The F1 score provides a balanced measure of precision and 

recall, considering both false positives and false negatives. 

                               

 

Fig 6 Evaluation Metrics for UCF101 dataset 

   

 

Fig 7 Evaluation Metrics for UCF50 dataset 
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When comparing the performance of the proposed CNN-LSTM with attention model on the 

UCF50 and UCF101 datasets, we observe the following results: 

The model achieved an accuracy of 0.7724 on the UCF50 dataset, indicating that it 

correctly classified 77.24% of the action samples. The precision, which measures the 

model's ability to correctly predict positive instances, was found to be 0.7792. The recall, 

which assesses the model's ability to correctly identify positive instances, matched the 

accuracy value of 0.7724. The F1-score, which combines precision and recall into a single 

metric, was calculated to be 0.7698. 

When evaluating the model on the UCF101 dataset, it achieved a significantly higher 

accuracy of 0.9083, indicating a more accurate classification of 90.83% of the action 

samples. Precision, measuring the model's ability to correctly identify positive instances, 

reached a value of 0.9124. Recall, representing the model's ability to correctly detect 

positive instances, was found to be 0.9083. The F1-score, which balances precision and 

recall, yielded a value of 0.9053. 

The model achieved higher accuracy, precision, recall, and F1-score values on the UCF101 

dataset compared to the UCF50 dataset. This improvement can be attributed to the larger 

and more diverse nature of the UCF101 dataset, which includes a broader range of action 

categories and variations in video samples. 

The superior performance on the UCF101 dataset demonstrates the effectiveness of the 

proposed CNN-LSTM with attention model in handling complex action recognition tasks. 

The higher accuracy, precision, recall, and F1-score achieved on the UCF101 dataset 

suggest that the model has a stronger capability to generalize and recognize actions across 

different contexts and variations. 

 

Fig 8 Predicting the diving image 
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                                  Fig 8 Predicting the horserace image 
 

 

 

 
                               Fig 9 Predicting the drumming image 
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Fig 10 Predicting the walking with dog image 

 

 

 

 
 

Fig 11 Predicting the Tennis Swing image 
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CONCLUSION 

 
In conclusion, this study focused on human action recognition using a CNN-LSTM 

architecture with an attention model. By integrating spatial and temporal information, the 

proposed approach achieved accurate recognition of human actions on benchmark datasets, 

namely UCF-101 and UCF-50. The CNN-LSTM model effectively captured spatial features 

through a CNN backbone, while the LSTM network captured temporal dependencies and 

sequence information. The inclusion of an attention model enhanced the discriminative 

power of the model by highlighting relevant features and improving activation patterns.The 

findings of this study emphasize the significance of considering both spatial and temporal 

information for accurate action recognition. By leveraging the complementary nature of 

these two modalities, the proposed CNN-LSTM architecture with an attention model 

demonstrated its ability to capture meaningful patterns in video sequences and improve 

action recognition accuracy. This highlights the importance of designing robust models that 

can effectively integrate both spatial and temporal cues in order to achieve accurate and 

reliable action recognition results.The utilization of benchmark datasets, such as UCF-101 

and UCF-50, provided a comprehensive evaluation of the proposed approach's 

performance. These datasets encompass a wide range of human activities and action 

classes, allowing for a thorough assessment of the model's ability to generalize and 

recognize diverse actions. The proposed CNN-LSTM architecture with an attention model 

offers a promising approach for accurately recognizing human actions in various 

applications, including video surveillance, human-computer interaction, and activity 

analysais. 
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