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A B S T R A C T   

Survival Analysis is essential in the manufacturing field to determine unnecessary events by the input data. In 
Survival analysis, predictive maintenance plays a major portion in the identification of machine failures based on 
incoming input data from diverse equipment or sensors. Therefore, the Deep learning method is exploited for 
barbarizing the issues of predictive maintenance marginally but these techniques are not quite useful to predict 
the failure of devices for certain input data which the technique had not learned. Meanwhile, the neural network 
techniques are capable of predicting the output in accordance with the preceding input feature, the performance 
was poor when the input features have large variations. As a result, the transformation of input data degrades the 
performance of the neural network and the algorithm does not support the prediction of machine failure. To 
overcome such drawback, this paper proposes a novel Sugeno Fuzzy Ensemble Convolutional based War Strategy 
Algorithm (SFEC-WSA) to classify the device and identify the survival time in accordance with the input features. 
The proposed SFEC system integrates the process of both the Sugeno fuzzy integral ensemble model and the 
Attention-based Bidirectional CNN-RNN Deep Model (ABCDM). The SFEC-WSA algorithm is applicable in 
learning diverse input feature variations thereby predicting the robustness of the input data. The proposed SFEC- 
WSA analyses several parameters such as vibration, rotation, voltage, and pressure to evaluate the condition of 
the equipment. The experimentation results revealed that the proposed model effectively predicts large test data 
and performs better than other approaches.   

1. Introduction 

Nowadays, the emergence of information in technology is one of the 
most important ones for all people. Data is the word mainly used in the 
entire field such as the medical, financial, and industrial sectors. Big 
data plays a major role that changing the environment of the medical 
healthcare sector. The big data are gathered from the patients and saved 
digitally which helps the patients for better care and services. Big data 
cannot manage with database management tools that contain difficulty 
as well as enormous characteristics. The fundamental method of medi
cine is the calculation analysis of combined databases (Yang et al., 
2020). Survival Analysis is the numerical form of analysis used to 
identify the specific duration of an event that is going to happen and 
provides to manage the risk of that particular event. The survival 

analysis is used by doctors for making screening decisions and provides 
treatment for alleviating the risk of diseases in humans. The deep neural 
network helps in the field of analysis, especially in survival analysis. This 
method focuses on handling the situations of multiple events and 
learning the difficult situations among possibilities of survival and tra
jectories (Lee et al., 2019). 

Meta-analysis recommended that thrombolysis decreases the death 
rate of patients but increases intracranial hemorrhage and bleeding 
(Javaudin et al., 2019). Moreover, the immune system consists of T and 
B cells. The B cells confinement is called a Tertiary Lymphoid structure 
(TLS) which is found in melanoma and various types of cancer. From the 
analysis of melanoma tumors, cd8+T cell infiltration is 33% of patients. 
The survival of TLS/cd8+ continues in the multivariate analysis for the 
stage of the disease. The lymph node metastases by using survival 
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analysis identified the patient’s trend including tumor-infiltrative TLS 
with enhanced survival (Cabrita et al. 2020). Another disease is Coro
navirus which is a vulnerable disease spread all over the world (Kannan 
et al., 2021). Also, the 331,298 patients’ data were analyzed, and found 
positive cases of covid-19 were by using real-time Polymerase Chain 
reaction (PCR) (Parra-Bracamonte et al. 2020). Breast cancer is a diag
nosed disease that leads to death. The therapeutic effects are improved 
by chemotherapy and surgery for breast cancer (Sun et al., 2019). 

In cancer clinical trials, the patient’s voice was included when 
evaluating the risk present in cancer by PROs (Patient-Reported Out
comes). The PROs are clinically analyzed and they provide information 
about the safety of patients, and choices of treatment (Coens et al., 
2020). The statistical methods are not helpful for the identification of 
new values and visualizations. The decision tree analyses the big data for 
the illustration of the result and interprets the tree structure. In the 
survival analysis, the survival years of dead ones are commutated by the 
subtraction of the diagnosis date to the death date (Ganggayah et al., 
2019). The combined genomic data and histopathological images 
improved the survival predictions and personalized treatments (Hao 
et al., 2019). 

The decisions made in the Intensive Care Unit (ICU) improved the 
prognostication of patients’ risk of dying. Several proclaimed methods 
found in ICU were Simplified Acute Physiology Assessment, Acute 
Physiology Score (SAPS), mortality prediction model, and chronic 
health evaluation. The ICU provides valuable information based on the 
outcomes of the patient but some information gathers from ICU is not 
regular. Machine learning technologies provide clear data and help in 
clinical decision-making (Thorsen-Meyer et al., 2020). The Machine 
Learning techniques applied to many neural networks along with pa
rameters are optimized (Huang et al., 2019). 

Yang et al.(2023) presented a meta-graph-based fault diagnosis 
framework to identify the faults in homogeneous sensors. The features in 
the graph are learned using the graph convolutional neural network. 
Asutkar et al.(2023) presented a transfer learning framework for iden
tifying the faults and survival rate of vibration-based machines. Lao 
et al.(2023) presented a Dual Scale Neural Network (DSNN) to extract 
the fault features which affect the survival rate of the switch machines. 
To handle the unannotated samples, the semi-supervised weighted 
prototypical network (SSWPN) model is presented. Lao et al.(2023) 
analyzed the survival rate of the turnout switch machine using an 
improved LightGBM (Light Gradient Boosting Machine) architecture 
optimized using the adaptive feature selection method and improved 
focal loss function. These techniques are mainly incorporated to over
come the low diagnostic accuracy of the existing techniques, discrimi
nate similar features, and minimize redundant features. 

In deep neural networks, the survival time using Weibull distribution 
is analyzed for large datasets. The Cox proportional hazards regression 
technique is used to analyze the censored data. Due to the presence of 
hazard function the survival time of the proportional hazards remains 
stable (Zhao and Feng, 2020). The survival analysis of detection is the 
statistical model which is widely utilized in clinical applications. The 
survival analysis is evaluated based on the functions of survival and 
hazard. The main issue obtained in the survival analysis is it is not able 
to maintain the data within the given time (Deepa & Gunavathi, 2022). 
To analyze large industrial data, multi-sensor data is introduced to 
obtain the machine’s data in the form of electronic record management. 
This helps to validate the data records scientifically from the previously 
obtained unknown data (Sankareswaran Pandi Senthil & Krishnan 
Mahadevan, 2022). Machine learning and deep learning methods are 
determined in survival analyses for predicting the disorder (Almazroi, 
2022). 

In the Sugeno Fuzzy Ensemble Convolution method, the analysis of 
fuzzy is optimally determined with better classification. It is widely used 
in the engineering field for modeling and also controls complex systems. 
The complex problems obtained in various engineering fields are solved 
by this method and enhance the performance of survival analysis 

(Dhiravidachelvi et al., 2023; Kalpana et al., 2023; Senthil Pandi et al., 
2022a, 2022b). 

The Sugeno fuzzy ensemble technique is utilized in this paper instead 
of the conventional fuzzy ensemble techniques because it determines the 
overall outcome of the input test sample using different combinations of 
the CNN classifier output. Here the final classification score is deter
mined using the fuzzy membership function instead of the CNN pre
diction scores. The effective ABCDM model is utilized to enhance the 
feature extraction ability of the proposed model at different scales from 
the machine. The WSA algorithm is used to fine-tune the SFEC model to 
improve the faults diagnosis and survival rate prediction ability. The 
SFEC model has a superior distinguishing ability to detect faults in the 
machinery. 

The integration of these techniques helped to improve the general
ization and robustness of the node survival analysis model. Various re
searchers utilized the Sugeno fuzzy ensemble technique for different 
applications such as COVID-19 prediction (Dey et al., 2022), imbalanced 
data analysis (Wang et al., 2020), motor imagery classification (Zhang 
and Ding, 2023), cervical cytology classification (Kundu et al., 2021), 
tuberculosis detection (Dey et al., 2022), etc. Our proposed model is the 
first one which applies the Sugeno fuzzy ensemble technique for ma
chine survival rate analysis inspired by its advantages of it in other 
domains. Due to the continuous enhancement of the Sugeno fuzzy 
ensemble convolution approach, this can be applied in the 
manufacturing field by proposing the SFEC-WSA method. Compared to 
the previous method the proposed method attained a superior perfor
mance in survival analysis and also predicted large datasets. 

The prediction of a faulty framework is complex to identify input 
data combination that leads to failure. For this problem, a novel tech
nique is proposed in this paper to enhance the performance of input 
features containing large variations. The contribution of this paper is 
delineated as follows.  

• A novel Sugeno Fuzzy Ensemble Convolutional based War Strategy 
Algorithm (SFEC-WSA) algorithm is proposed to predict the failure 
of the device and identify the survival time based on input data.  

• The proposed SFEC system integrates the process of both the Sugeno 
fuzzy integral ensemble model and the Attention-based Bidirectional 
CNN-RNN Deep Model (ABCDM) to determine varied features of the 
data for enhancing prediction results. 

• The proposed SFEC-WSA analyses several parameters such as vi
bration, rotation, voltage, and pressure to evaluate the condition of 
equipment thereby predicting the robustness in accordance with the 
input data.  

• The parameters such as accuracy, precision, recall, and F1-score are 
obtained to validate the performance of the proposed method. 

The remaining part of the article is delineated as follows. In section 2, 
the existing works based on the Survival analysis of structured data 
using various methods are discussed. In section 3, the proposed 
approach for survival analysis is described. The experimental results are 
presented in section 4. Finally, in section 5, the conclusion part is dis
cussed in this paper. 

2. Literature survey 

Warrier and Gupta (2022) developed using deep reinforcement 
learning to analyze survival on structured data. Prediction of the sur
vival device on the input data was a difficult task because of its lack of 
failure data capturing and the occurrence was very rare. The deep 
learning algorithm called the Double deep Q network (DDQN) model 
was introduced in this paper to classify the failure device. As a result, the 
introduced DDQN model was trained through the smaller quantity of 
input data as well as efficiently predicted a larger quantity of test data. 
Meanwhile, the same analysis was needed to implement image data 
modality. Thorsen et al. (2022) illustrated a deep learning method to 
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estimate the survival analysis of discrete time. The main subjective of 
this paper was for predicting the patient’s survival based on the inten
sive care unit (ICU). A deep learning design was introduced in this paper 
to estimate the data-rich settings through survival modeling and entity 
embeddings in the ICU. Using the SHAP method to calculate and visu
alize drivers of survival predictions. Therefore, the interpretability 
models enable us for understanding the various data domains impacts. 

Chi et al. (2021) established a survival analysis description using the 
deep semi-supervised multitask learning (SSMTL) method. Survival 
analysis has been used to predict and analyze the timing of events in the 
medical field. But some assumptions are ignoring real-world data. In this 
paper, SSMTL was introduced for tackling the issues, and the effects of 
predictors are described successfully. As a result, the SSMTL method 
attains to enhance the performance and the survival analysis setting in 
with or without competing risks. On the other hand, this method cannot 
handle all complex tasks in machine learning. Kopper et al. (2022) 
explained a survival analysis of complex hazard structures using Deep 
Piecewise exponential Additive Mixed Models (DPAMM). Survival 
analysis has become prevalent in many medical applications. To address 
the time-to-event in the medical field, DPAMM was introduced in this 
paper. Hence, compared to other machine learning techniques DPAMM 
achieved better performance for predictive. However, in high dimen
sional data or multimodal data, the introduced PAMM method was not 
applicable. 

Chi et al. (2021) illustrated survival analysis and explanation of the 
semi-supervised learning model. The SSMTL method was obtained for 
analysis with or without taking a risk. The survival analysis problem 
could be converted into a multi-task problem by the SSMTL method. The 
survival analysis model could be directly modeled without any suppo
sition. The survival analysis of the deep learning method was effectively 
used in complex situations that occurred in the medical field. As a result, 
the survival analysis of the SSMTL model obtained a better performance. 
The prognostic factors were obtained successfully. On the other hand, 
the outcome iterations were unstable. Lee et al. (2019) illustrated the 
deep learning approach obtained to challenge the risk for dynamic 
survival analysis. The dynamic deep-hit approach was applied which 
avoided the risks based on longitudinal data. As a result, the established 
method of dynamic analysis on disease progression improved health 
care effectively. The individual risks obtained from cystic fibrosis fail
ures could be improved highly by a dynamic deep-hit approach. 
Meanwhile, it required a long time to link the other national data set. 

Snider and McBean (2020) reviewed the improvement of urban 
water scarcity through machine learning (ML) techniques. In the Ca
nadian water distribution system, the Weibull proportional hazard sur
vival analysis design and tree ML design was used for prognosticating 
the time for cast-iron pipes. The two-pipe break designing approaches 
survival analysis and MLalgorithm were applied. As a result, the ma
chine learning algorithm was good which predicted the time-to-break 
dataset in the indicators such as MAE, RMSE, C-index, and correlation. 
Meanwhile, the prediction of pipe-break designs was not improved and 
the cost was effective. Seidler et al. (2019) illustrated cervical lymph
adenopathy evaluation in machine learning techniques of dual-energy 
CT analysis. The VMI (Virtual Monochromatic Image) dataset was 
used which differentiated the head and neck squamous cell carcinoma 
(HNSCC). As a result, the texture analysis with different nodal pathology 
was obtained with higher accuracy. On the other hand, two separate 
image data sets were required for analysis. 

Survival analysis is a significant method that is used in the 
manufacturing field to calculate the time variations of events. The fail
ures of the machines are determined based on the incoming data from 
various sensors and equipment. To determine the survival analysis the 
authors explained various research methods. Some of the existing 
methods such as SSMTL, DDQN, DPAMM, HNSCC, and various machine 
learning methods are employed to overcome the issue obtained in 
detecting the input data from the failed device. The survival analysis 
data are predicted based on the data-rich settings. In the medical field, 

survival analysis is used to detect the disease on time which helps to 
tackle time consumption. To overcome the complex situations generated 
in the industrial field the survival analysis is determined. However, all 
these developed methods have some limitations in that they validated 
the data only when two different data and data modalities are obtained 
in survival analysis. When redundant data is obtained it is not able to 
handle the data in machine learning methods. In some situations, the 
survival analysis is not suitable for high-dimensional data. 

The multiple sensor data can often give information about the faults 
in different parts of the machine which affects its survival rate. Hence, 
one of the challenges associated with the existing technique is to 
determine the high-quality features present in the multi-sensor data. The 
existing graph-based techniques often complicate this process by 
creating a complex graph structure to process the multidimensional data 
resulting in large computational costs. Most of the existing research is 
mainly focused on identifying a single type of fault in the rotating ma
chines. Different parameters such as vibration, current, and temperature 
also need to be explored to derive the complete status of the machinery. 
To integrate the multi-sensor data for fault diagnosis, we incorporated 
different parameters such as rotation, voltage, vibration, and pressure. 

So the drawbacks of the existing methods are overcome by the pro
posed Sugeno Fuzzy Ensemble Convolutional-based War Strategy Al
gorithm (SFEC-WSA) for categorizing the system to identify the survival 
time. The proposed method is suitable for varied applications of input 
data features that validate the failure of equipment. Multiple data are 
processed by optimizing the WSA algorithm that improved the effec
tiveness of survival analysis. The unbalanced data are determined to 
estimate the survival analysis of the structured data. This work mainly 
aims to analyze the survival rate of the machinery based on the different 
features identified. Based on the machinery’s condition and the cost to 
repair it will determine the survival rate of the machine. Early failure 
can be detected and the survival rate can be improved via a proper 
maintenance tactic. 

2.1. War Strategy Optimization (WSO) 

Based on the fitness value, the soldiers had an equal probability of 
becoming either commander or king in every iteration. In the war field, 
the commander and king act as the leaders, and the remaining soldiers 
are guided by the commander and king. The infantry, elephants, and 
chariots are the several forces in the kingdom’s army. The Vyuha is the 
arrangement or pattern of several army troops utilized for conquering 
the opposing kingdoms in the war. The main objective of the army 
soldier is for attacking the opposite team as well as order progress. In 
war strategy, various steps are involved and they are followed (Ayyarao 
et al. 2022); 

2.1.1. Attack strategy 
According to the position of commander and king, the soldiers are 

updating their positions. The king assumed the beneficial position for 
launching massive attacks based on position. The soldiers with the 
highest attack fitness or force are considered the king. If the strategy was 
successfully performed by a soldier, his rank increases. The weights and 
ranks of the soldiers are updated by the success of the strategy. 

Zk(v + 1) = Zk(v)+ 2 × β × (E − K)+Rand × (Xk × K − Zk(v) ) (1)  

where Zk(v + 1) denotes the new position, the previous E position is 
indicated by Zk, king position is represented by K, as well as weights are 
indicated by Wk. 

2.1.2. Update weight and rank 
The search agents updated their position based on the position 

interaction of the commander, King as well as the rank of every soldier. 
In the war field, the soldier’s rank will be based on their success history. 
Then the mathematical calculation is expressed as; 
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Zk(v + 1) = (Zk(v + 1) ) ×
(
Hp ≥ Hr

)
+(Zk(v) ) ×

(
Hp < Hr

)
(2) 

When the soldiers are updated their position successfully, then the 
soldier is upgraded their rank Sk and it is expressed as; 

Sk = (Sk + 1) ×
(
Hp ≥ Hr

)
+(Sk) ×

(
Hp < Hr

)
(3) 

The newly generated weight is formulated as; 

Xk = Xk ×

(

1 −
Sk

MAX − ITERATION

)γ

(4)  

2.1.3. Defense strategy 
In this strategy, the positions are updated on the army head, king as 

well as random soldier. The main goal of the defense strategy is for 
protecting the kings from battle. In the war, the army troops are utilized 
for investigating the larger area of the search spaces. The army changed 
its strategy dynamically from time to time for confusing the opposing 
army. 

Zk(v + 1) = Zk(v)+ 2 × β × (K − ZRand(v) )+Rand × Yk × (e − Yk(v) )
(5) 

The war strategy explored more search spaces than the other stra
tegies. The soldiers acquire larger steps and update their positions for 
larger values of Yk. 

2.1.4. Relocation/Replacement of weak soldiers 
In this approach, various relocation schemes are tested. One of the 

simplest approaches is to replace weak soldiers with random soldiers. 
Then it is calculated and it is expressed as; 

Zx(v + 1) = LB +Rand × (UB − LB) (6) 

In the war field, the second technique is utilized for relocating the 
weak soldiers with the entire army. The convergence behaviors of the 
WSO algorithm are improved by this approach. 

Zx(v + 1) = − (1 − Rand) × (Zx(v) − MEDIAN(Z) )+K (7)  

2.1.5. Exploitation and exploration 
These are the two significant metaheuristic algorithms that deter

mine a better trade-off strategy to enhance the approach effectively. The 
attack strategy indicates exploitation, as well as the defense strategy, is 
indicated by exploration. The essential factors of this approach are as 
follows;  

⁶ When a soldier moves to exploitation or exploration oriented by the 
rand variable.  

⁶ The qs factor assisted the user to give flexibility for choosing the 
values based on a fitness function. 

At the end of the war, the target areas are determined by using army 
troops as well as the army troops are surrounded by the target areas, 
then the commander and king are close to the target. 

The WSO is a war strategy called Vyuha in which each kingdom is 
used to attack the opposing army and the only goal is to win the battle. 
The emperor and commanders in the army integrate the forces into 
specific units. Random attacks, signaling by drums, relocation of weak 
soldiers, defense strategy and traps by the opposition are some of the 
attacks that take part in war strategy. Every existing algorithm has its 
benefits well as drawbacks when it comes to achieving different objec
tives. For obtaining improved robustness and convergence, a different 
algorithm such as Genetic Algorithm (GA) (Katoch et al., 2021), Particle 
Swarm Optimization (PSO) (Samanta & Nataraj, 2009), Horse Herd 
Optimization (HHO) (Basu et al., 2023), and Grasshopper Optimization 
Algorithm (GOA) (Meraihi et al., 2021) has been used by different re
searchers. These algorithms are often improved using different strate
gies such as mutation, fuzzy logic, and quantum computing to improve 

their performance. But they suffer from different complexities such as 
slow convergence, constrained to local optima, and premature conver
gence. The PSO and GA algorithm has a slightly slower convergence rate 
and higher computational complexity when compared to the existing 
techniques. 

The GOA algorithm often struggles to achieve an effective balance 
between the exploration and the exploitation phases. The HHO algo
rithm often suffers from premature convergence when applied to com
plex engineering problems such as signal processing and intelligent fault 
diagnosis. The increased number of algorithm-related parameters is 
another problem that improves the computational complexity. As per 
the No Free Lunch theorem, a single optimization algorithm cannot 
satisfy the objective functions of different engineering problems. The 
WSA algorithm offers improved performance and overcomes different 
drawbacks presented in the above section. 

3. Proposed methodology 

One of the important analytical solutions for predicting the failure of 
the equipment is survivability analysis, which monitors the performance 
of the input operational data. The need for numerous past historical data 
points has been identified to automate the prediction of failure equip
ment. This is not always possible, as the input data levels leading to the 
failure of that apparatus may be limited or absent from the input dataset. 
Some solutions based on deep learning (DL) methods are developed for 
asymmetric initial datasets. Although the models developed in such 
cases have been observed to suffer from the problem of bias because of 
their poor generalization. Our research aims to solve the problem by 
proposing a novel Sugeno Fuzzy Integral Convolutional based War 
Strategy Algorithm (SFEC-WSA) to understand the input data dynamics. 
The overall system design for the SFEC-WSA method is delineated in 
Fig. 1. 

3.1. Survival analysis 

Artificial intelligence (AI) plays a major role in automating appli
cations as well as it makes human life easier. In the sector, monitoring 
the operational lifetime of the equipment or device is a significant core 
requirement and it has some implications to manage the operational 
costs effectively. The survival analysis is constructed through statistical 
approaches and utilized for predicting whether the event occurred or not 
in the given input feature or data. 

Survival analyses are mainly utilized in industries for preventing 
failure in device equipment or machines. The dataset is created with 
input data for predicting whether the device is operating normally or 
not. The input characteristics of the device contain metrics like rotation, 
voltage, vibration, and pressure. According to the input characteristics, 
the failure or normal case is denoted in the binary target variable. Based 
on the input data metrics, the target classes are balanced for predicting 
the failure case automatically. The deep learning (DL) techniques work 
effectively in the balanced dataset when compared to other unbalanced 
datasets. The predictions of the fault scenario are complicated for 
determining the input data combination that leads to a failure case. A 
reliable and robust algorithm based on Sugeno Fuzzy Integral Con
volutional based War Strategy Algorithm (SFEC-WSA) is proposed for 
solving this type of scenario. 

3.2. Sugeno fuzzy integral ensemble (SFE) 

Ensemble learning is the strategy utilized to fuse the key character
istics with two or more base learners. The ensemble minimized the 
variance by predicting the errors because the framework is more robust 
than other designs. The majority of the conventional ensemble ap
proaches are used for assigning the pre-defined classifier weight for 
calculating the ensemble. The fuzzy integral-based method is utilized to 
assign the fixed weight for the classifier (Kundu et al., 2021). The 
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algorithm is more robust when compared to other conventional ap
proaches. The fuzzy integrals proved that they successfully solved the 
various pattern recognition issues. They are flexible and powerful 
functions to aggregate information according to fuzzy measures. If the 
aggregation is calculated, the fuzzy measure indicates the importance or 
relevance of the sources of constituent information. 

The fuzzy measure is considered as the set function g and it satisfies 
some properties are explained as follows; 

g(φ) = 0 , g(Y) = 1 

2. B,C ∈ γ and B⊂C, implies g(B) ≤ g(C)
3. If Do ∈ γ,D1⊂D2⊂D3⊂........⊂ Do then LIMo→∞g(Do) =

g(LIMo→∞ Do)

From the above equation, the Borel field with an arbitrary set Y is 
represented by γ, the total number of information sources are repre
sented by O. The Sugeno-β measure satisfies some conditions and they 
are followed as; 

gβ(T) = 1 

2 If fj ∩ fk = φ, then ∃ b β > − 1 then; 

gβ
(
fj ∪ fk

)
= gβ

(
fj
)
+ gβ(fk)+ β.gβ

(
fj
)
(fk) (8) 

From the above equation, the real root is represented by β. 

Fig. 1. System architecture design.  
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β+ 1 =
∏O

o=1
(β, g(fo) + 1 ) (9) 

The Sugeno integral with the measurable function g for the fuzzy 
measure is computed and expressed in the below equation; 
∫

g(y)dΩ = MAX
1≤j≤o

(
MIN

(
g
(
yj
)
,Ω

(
Bj
) ) )

(10) 

From the above equation, the ranges are represented by Ω
(
Bj
)
=

Ω
({

yj, yj+1, yj+2, ......., yo

})
and {g(y1), g(y2), ....., g(yo) } as well as it is 

defined as g(y1) ≤ g(y2) ≤ g
(
y3
)
≤ ..... ≤ g(yo). The pseudo-code of 

Sugeno Fuzzy Integral Ensemble is expressed in algorithm 1.  
Algorithm 1: Pseudo code of Sugeno Fuzzy Integral Ensemble 

Step 1: Input initialization 
Probability score (Q), the total number of base learners (NUM LEARNERS), fuzzy 
measures (ℑ), and the number of dataset classes (NUM CLASSES). 

Step 2: Output 
Prediction of final class (x̂). 

Step 3: Initialize, β by using equation (2) and predictions from the empty list. 
Step 4: for the class index (j) ∈ {0, 1, 2, ..., NUM CLASSES − 1} do 
Array Q sorted in descending order, 

Permutation of ℑ, 
g(f)pre←ℑπ[0], 
Fuzzy Prediction←MIN(Qπ [0], ℑπ [0] )

for o ∈ {0, 1, 2, ...., NUM LEARNERS} do 
g(f)curr←g(f)pre + ℑπ [o] + β⋅ℑπ [o] × g(f)pre, 
Fuzzy Prediction←MAX(Fuzzy Prediction), 
MIN

(
Qπ [o], g(f)curr

) )
, 

g(f)pre←g(f)curr. 
end for 
Prediction[j]←Fuzzy Prediction 
end for 
Step 5: x̂←ArgMAX(Prediction[j] ).  

3.3. Attention-based Bidirectional CNN-RNN deep model (ABCDM) 

The DL designs are considered as ABCDM which limited the existing 
deep architectures for both long and short users to detect the popularity 
in sentiment analysis (Basiri et al., 2021). The long-term dependencies 
and local features were captured by using CNN, bidirectional LSTM, 
attention mechanism, GloVe word embedding, and bidirectional GRU. 
The GloVe word embedding matrices are generated Gw ∈ Qm×b with b 
and m being the embedding dimension and the total number of words is 
utilized for enabling the comment vector with n being the padding 
length or the maximum number of words qe, e ∈ [1, n] is followed as; 

ve = Gwqe, e ∈ [1, n] (11) 

The embedding layer output is arranged in the form of backward and 
forward arbitrary length and exact long dependence which applies to 
two parallel layers Bi-GRU and Bi-LSTM. The LSTM and GRU are 
enabled by both long and shortest order. 

a→eLSTM = LSTM(ve), e ∈ [1, n] (12)  

a→eLSTM = LSTM(ve), e ∈ [n, 1] (13)  

a→eGRU = GRU(ve), e ∈ [1, n] (14)  

a→eGRU = GRU(ve), e ∈ [n, 1] (15) 

We can able to get the forward and backward context using qe a word 
for each concatenating as follows: 

aeLSTM ==

[

a→eLSTM , a←eLSTM

]

(16)  

aeGRU ==

[

a→eGRU , a←eGRU

]

(17) 

The term aeLSTM and aeGRU the word focus mechanism are used and can 
make the model in high or less attention. The different modified word 
comments are as follows: 

ceLSTM = ebma
(
GqLSTM aeLSTM + dqLSTM

)
(18)  

ceGRU = ebma
(
GqGRU aeGRU + dqGRU

)
(19)  

βeLSTM
=

exp
(

ce
eLSTM

ceLSTM

)

∑
eexp

(
ce

eLSTM
ceLSTM

) (20)  

βeGRU
=

exp
(

ce
eGRU

ceGRU

)

∑
eexp

(
ce

eGRU
ceGRU

) (21)  

R LSTM =
∑

e
αeLSTM aeLSTM (22)  

RGRU =
∑

e
αeGRU aeGRU (23) 

where cq is the vector of context which may be used to learn jointly 
on the training and initialize randomly. The term ce is hidden repre
sented ae and also the term cq and ce is derived as a similarity of the 
important word. When the important weights αe are applied to the 
weighted sum and it changes the term R. The term R is the vector of 
comment which is used to shorten the all information in the comment. 

The convolution operation is utilized for the extraction of local fea
tures and reduces input data dimensionality after acquiring the final 
comment representation R. The convolution allows the model to obtain 
position constancy. For Bi-LSTM and Bi-GRU branches, two convolu
tional layers with the variant kernel are applied individually in ABCDM. 
The integration of 1D-CNN along with diverse window sizes and a lot of 
constant filters are employed for Bi-GRU and Bi-LSTM output individ
ually. 

The two individual CNNs are employed for the Bi-GRU and Bi-LSTM 
layers output because of the presence of CNN layers’ 4 output. On the 
CNN layer’s output, the average and maximum pooling layers are piled 
up individually for feature-down sampling. Then the feature maps 
become more powerful for the feature’s position change. In the CNN 
layer, the number of filters d is considered and then every pooling op
eration’s final feature vector is expressed in the below equation. 

Mvj = [mv1,mv2, ......,mv] , j ∈ [1, 8] (24) 

The numerical expression of the output layer is expressed in the 
below equation. The 8 feature vectors are coupled for the final vector 
formation and are expressed in the below equation. 

Mv = [Mv1,Mv2, .....Mv8] (25) 

To accelerate overfitting and network training, batch normalization 
is applied and acquire the vector Mv. The fully coupled dense layer is 
used for the prediction of the comment’s sentiment polarity to change 
Mv the vector into the representation of high-level sentiment. The nu
merical expression of the output layer is given below. 

af = Relu
(
Gbas + df

)
(26) 

From the above equation, as represents hidden representation, Gb 

and df represents parameters acquired in the training process. At last, 
the output of the dense layer is generated through the sigmoidal function 
in favor of binary categorization. The architecture of the ABCDM 
method is given below (Fig. 2), 

The fault detection of the device is determined by integrating the 
attention layer with CNN. This is performed with large data sets and the 
failure of the device is predicted from input data. In this combination, 
the merging of the attention layer generates the Sugeno fuzzy classifi
cation output for identifying the survival analysis of the input node. We 
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individually employed two parallel convolutional layers for the BiGRU 
and BiLSTM classifiers. Hence, four outputs are derived from the indi
vidual CNN classifiers which serve as the inputs to the Sugeno fuzzy 
ensemble classifier. Using the classification combination approach, the 
Sugeno fuzzy ensemble classifier identifies the different outcomes, and 
the fuzzy confidence score is acquired using the Sugeno interval. For the 
different CNN classifier combinations, the remaining fuzzy measure 
value is computed after identifying the Sugeno fuzzy measure. The fuzzy 
measure values are optimally set using the WSA algorithm during 
training to overcome the parameters set by trial and error and manual 
tuning. 

3.4. Sugeno fuzzy ensemble Convolutional-based war strategy algorithm 
(SFEC-WSA) for survival analysis 

Fig. 3 describes the working procedure of the proposed Sugeno Fuzzy 
Ensemble Convolutional-based War Strategy Algorithm (SFEC-WSA) for 
identifying the survival time of devices. The proposed SFEC system in
tegrates the process of both the Sugeno fuzzy integral ensemble model 
and the Attention-based Bidirectional CNN-RNN Deep Model (ABCDM). 
Moreover, to enhance the performance of prediction results, the pa
rameters SFEC model is reweighted adaptively using the war strategy 
algorithm. The proposed SFEC-WSA analyses several parameters such as 
vibration, rotation, voltage, and pressure to evaluate the condition of the 
equipment. 

Initially, the Parameters of ABCDM, total base learners, and data 
classes are initialized. From the inputted data, the significant data from 
the information source are measured using fuzzy metrics. In addition, to 
improve the training performance and minimize overfitting issues, the 
batch normalization layer of the ABCDM concept is infused with it. The 
learning parameters of the SFEC model are optimized using the war 
strategy algorithm (WSA) to enhance the prediction efficiency. Thus, the 
proposed SFEC-WSA approach accurately predicts the device survival 
time. 

Assume an identical device N generated by the linked systems ad 

with the survival analysis time S ∈ R
+. The identification of device 

failure affects the overall process and generates an abnormal system 
operation. The working of the device is monitored by various sensors us, 
and the failure of the system determines vs as well as the data collected 
from the input is stored as ℓ . The survival analysis device represented as 
Sn

g in which n = 1,⋯ , N that halted the working condition of the device. 
The objective of the research is to predict the failure of the device 

from the input data and analyze the survival time from large datasets. 
These are to be detected based on the evaluation of the lifetime of the 
device, failure, and survival analysis data which helps to monitor the 
device to enhance its performance. To achieve the goal the SFEC-WSA 
algorithm is proposed to predict the robustness based on the input 
data with varied features. 

The expression for the device component is formulated as 

v =
(
v1, v2,⋯, vad

)
∈ {0, 1}ad (27) 

The device function is determined when yj the value becomes one 
other it tends to be zero. The state space of the device monitors all the 
possible functions of v in which the structured data is determined by 
φ : {0,1}ad → {0,1}. However, if the device function attains φ(v) = 1 
then it terminates the functioning of the device, or if it achieved the 
functional value of 0 the working condition is performed in a better way. 
The structured data functions based on parallel and series systems are 
expressed as 

φ(v) = Λ
ad

j=1
vj (28)  

φ(v) = ∨
ad

j=1
vj (29)  

where the logic AND and OR operator is indicated as Λ and ∨. The 
functioning of the device is not performed best when failure is detected. 
So if a device fails then it damages all the component analysis otherwise 
the functioning is performed properly. 

The survival analysis time of the device is monitored by h = 1, ⋯ , H 

Fig. 2. Architecture of ABCDM.  

Fig. 3. Flow diagram of SFEC-WSA.  
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sensors. The evaluation of monitoring the device is formulated as 

ℓ =
{{

Un
s , vn

s

}Sn
LIFE

s=0

}N

n=1
(30) 

From the above equation, the state vector of the device is denoted as 
vn

s and ℓ denotes the data set. The expression of the data matrix is written 
as 

Un
s =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

un
s,1

un
s,2

⋮
un

s,ad

⎞

⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

un
s,1,1 un

s,1,2 ⋯ un
s,1,H

un
s,2,1 un

s,2,2 ⋯ un
s,2,H

⋮ ⋮ ⋱ ⋮
un

s,ad ,1 us,ad ,2 ⋯ un
s,ad ,H

⎞

⎟
⎟
⎟
⎟
⎟
⎠

∈ R
ad×H (31) 

The device measurement vector is indicated by un
s,i,h ∈ R

H. The data 
structure is highly applicable in the field of engineering applications for 
monitoring the performance of the device continuously based on input 
features. The fitness of the WSA algorithm is the loss rate of the Sugeno 
fuzzy ensemble model which is the error value computed between the 
actual and predicted output. 

F(X) = ρ − ρ⌢ (32) 

F(X) is the fitness function that is used to compute the error value of 
the Sugeno fuzzy ensemble model and ρ is the predicted output whereas 
ρ̂ is the actual output. The F(X) is an error function that analyzes the 
internal parameters (weights and biases) of the Sugeno fuzzy ensemble 
classifier. The WSA optimizer minimizes this error rate to improve the 
prediction accuracy of the classifier. If an error occurs then it is propa
gated back to the previous layer and then the weights and biases of these 
layers are modified to minimize the error rate. 

3.4.1. Fault detection 
The detection of fault determined in the device is predicted based on 

the SFE classifier to incorporate the base learners. The data samples of 
the fault occurred devices are evaluated based on the fuzzy integral 
method to estimate the fixed weight of the classifier. The fault-detected 
devices are determined in the fuzzy integral to solving different recog
nition issues. Fig. 4 depicts the prediction of device failure based on the 
SFE classifier. 

4. Results and discussions 

The proposed Sugeno Fuzzy Ensemble Convolutional based War 
Strategy Algorithm (SFEC-WSA) approach is employed to analyze the 
survival time of devices. To obtain the survival time, various tests are 
conducted and that is clearly explained in the below subsections. 

4.1. Experimental setup 

The performance analysis of the SFEC-WSA technique is imple
mented in an Intel i5 processor along with 16 GB RAM. 

4.2. Dataset description 

The unbalanced dataset is used to analyze the survival time of 
structured data with the help of some parameters such as vibration, 
rotation, voltage, and pressure. The ON and OFF condition of the device 
is predicted by using these parameters. The predictive maintenance 
problem affects the dataset from unbalanced classes so three types of 
device data are utilized. The first device data is denoted as Device-1that 
has 8761 data separated into 44 failed classes and 8717 normal classes. 
The second device data is represented as Device-2 which has 8761 data 
divided into 41 failed classes and 8720 normal classes. The third device 
data is depicted as Device-3 which has 8761 data split into 40 failed 
classes and 8721 normal classes. In general, the data sizes used for 
training and testing processes are 80% and 20% respectively. 

4.3. Hyperparameter configuration 

The hyperparameter tuning is performed to predict the optimal 
hyperparameter values which enhance the performance of the proposed 
SFEC-WSA approach. The hyperparameter configuration of the pro
posed SFEC-WSA approach is explained in Table 1. 

Fig. 4. Fault identification of the device based on SFE classifier.  

Table 1 
Hyperparameter configuration.  

Techniques Parameters Ranges 

WSO Population size 30 
Maximum number of 
optimization 

1000 

Soldier size 30 
Number of unimodal 
functions 

25 

Number of multimodal 
functions 

25 

Ensemble Sugeno Fuzzy 
Integral 

Total number of epochs 100 
Loss function Cross entropy 
Momentum 0.99 
Batch size 16 
Optimizer Stochastic Gradient 

Descent 
Initial learning rate 0.0001 
Learning rate decay period 10 epochs 

ABCDM Decay rate 10-10 

Dropout rate 0.2 
Learning rate 10-3 

Batch size 512 
Optimizer Adam Stochastic 

optimizer 
Loss function Binary cross entropy 
Padding size 45  
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4.4. Evaluation metrics 

For achieving the better performance rate of the proposed SFEC-WSA 
approach, a few performance evaluation metrics such as precision (P), 
accuracy (A), F1-score (ℑ), and recall (R) are utilized. 

Accuracy (A): 
Accuracy is the closeness measurement to reach an actual value that 

is expressed as, 

A =
predicted value − actual value

actual value
(32) 

Precision (P): 
Precision is defined as a closeness measurement between two or 

more measurements that are formulated as, 

P =
correctly predicted positive values

correctly and incorrectly predicted positive values
(33) 

Recall (R): 
The recall can determine all relevant cases in the model within the 

specific dataset is formulated as, 

R =
correctly predicted positive values

all predicted values
(34) 

F1-score (ℑ): 
The harmonic mean of recall and precision is known as F1-score and 

is also used to evaluate the binary classification systems. The F1-score is 
derived by, 

ℑ = 2*
R*P

R + P
(35)  

4.5. Performance analysis 

To analyze the performance of the proposed SFEC-WSA approach, 
some parameters such as vibration, rotation, voltage, and pressure are 
used for analyzing the input data features of Device-1, Device-2, and 
Device-3. The input data feature values for training data are described in 
Table 2and the input data feature values for testing data are explained in 
Table 3. From this table 2 and 3, the minimum range of training data is 
higher compared to the minimum range of testing data. But the 
maximum range of testing data is higher than the maximum range of 
training data. 

The 20%, 40%, and 80% of training data sizes are included to 
determine the performance of the proposed SFEC-WSA approach and the 
performance analysis is conducted based on the performance evaluation 
metrics such as accuracy, precision, recall, and F1-score. Fig. 5(a-c) 
represents the performance rate of various performance metrics namely 
recall, accuracy, F1-score, and precision. This performance rate evalu
ation is conducted for 20%, 40%, and 80% of training data. The per
formance rate of 20% is lower compared to the remaining 40% and 80% 
of training data. 

In 20% of training data, the performance rate of 68.5%, 69.7%, 
66.23%, and 67.90% are attained from accuracy, precision, recall, and 
F1-score respectively. The metrics such as accuracy, precision, recall, 
and F1-score provide the performance rate of 85.4%, 86.7%, 83.52%, 
and 84.81% respectively which are captured from 40% of training data. 
From this analysis, superior performance is obtained from 80% of 

training data. 

4.6. Comparative analysis 

For comparative analysis, the proposed SFEC-WSA approach vali
dates the performance by comparing with the existing methods such as 
Reinforcement Learning based Double Deep Q Network (RL-DDQN), 
Deep Piecewise Exponential Additive Mixed Model (DeepPAMM), Semi- 
Supervised Multi-Task learning (SSMTL) and Shapley Additive exPla
nations (SHAP) algorithm. 

Fig. 6 shows the performance analysis of various metrics for 20% of 
training data. The comparison is performed by using various methods 
namely RL-DDQN, DeepPAMM, SSMTL, SHAP, and the proposed SFEC- 
WSA approach. The proposed SFEC-WSA approach has a higher per
formance rate compared to other conventional methods. In 20% of 
training data, the performance rate of 68.5%, 69.7%, 66.23%, and 
67.90% are attained from accuracy, precision, recall, and F1-score 
respectively. 

Fig. 7 portrays a performance analysis using various performance 
analysis metrics namely precision, accuracy, F1-score, and recall for 
40% of training data. Each performance metric is compared by different 
approaches such as RL-DDQN, DeepPAMM, SSMTL, SHAP, and the 
proposed SFEC-WSA approach. Among all those analyses, the proposed 
SFEC-WSA approach achieved a high performance rate. The metrics 
such as precision, accuracy, F1-score, and recall provide the perfor
mance rate of 85.4%, 86.7%, 83.52%, and 84.81% respectively which 
are captured from 40% of training data. 

The performance analysis is evaluated for 80% of training data is 
depicted in Fig. 8. The approaches namely RL-DDQN, DeepPAMM, 
SSMTL, SHAP, and the proposed SFEC-WSA approach are employed for 
predicting the performance rate. This comparative analysis showed that 
the proposed SFEC-WSA approach achieved a higher performance rate. 
The superior performance is obtained from the 80% of training data. 

Table 4 depicts the comparative analysis of different metrics. The 
comparison with various parameters is performed in the proposed and 
existing methods by the training data 20%, 40%, and 80%. The 20% and 
40% training data performance is slightly diminished and the 80% 
training data attained a superior performance by achieving an accuracy 
of 97.2%. 

Comparative analysis for Device-1: 
Execution time is the time taken to complete the task and the 

comparative analysis of execution time is depicted in Fig. 9. The 
comparative analysis required some approaches such as RL-DDQN, 
DeepPAMM, SSMTL, SHAP, and the proposed SFEC-WSA approach to 
determine the performance superiority. The proposed SFEC-WSA 
approach got a better execution time of 0.44 s compared to other 
existing methods. 

Comparative analysis for Device-2: 
Fig. 10 presents the execution time of different methods such as RL- 

DDQN, DeepPAMM, SSMTL, SHAP, and the proposed SFEC-WSA 
approach. The proposed SFEC-WSA approach has a low execution 
time of 0.3 s and the SSMTL method attained a higher execution time of 
0.86 s. The remaining approaches like RL-DDQN, DeepPAMM, and 
SHAP have an execution time of 0.56 s, 0.75 s, and 0.66 s respectively. 
This analysis indicates the superior performance of the proposed SFEC- 
WSA approach. 

Table 2 
Input data feature values for training data.  

Input data features Device-1 Device-2 Device-3 

Minimum range Maximum range Minimum range Maximum range Minimum range Maximum range 

Vibration  22.7835  68.4683  23.4792  67.4260  24.4793  65.3893 
Volt  119.3479  227.4893  99.3792  236.4793  118.9086  225.6858 
Pressure  68.3720  143.3678  70.4738  143.4904  59.4793  144.1294 
Rotate  248.3792  600.3791  186.4839  633.4784  243.4894  631.4703  
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Comparative analysis for Device-3: 
Fig. 11 shows the execution time of various methods namely RL- 

DDQN, DeepPAMM, SSMTL, SHAP, and the proposed SFEC-WSA 
approach. The proposed SFEC-WSA approach attained a higher perfor
mance when compared to other conventional methods. The execution 
time of 0.73 s, 0.64 s, 0.85 s, 0.575 s, and 0.33 s are attained from RL- 
DDQN, DeepPAMM, SSMTL, SHAP, and the proposed SFEC-WSA 
approach respectively. 

Fig. 12 depicts the box plot graph for the proposed method. The 80% 
training data is determined to validate the accuracy performance. The 
box plot graph is used to demonstrate the way of distributing the data 
from a group to estimate the survival analysis by predicting a large data 
set. 

The convergence rate of the WSA algorithm is compared to different 

algorithms such as GA (Katoch et al. 2021), PSO (Samanta & Nataraj, 
2009), HHO (Basu et al.2023), and GOA (Meraihi et al.2021), and the 
results are presented in Fig. 13. The experiment is conducted for a total 
of 30 iterations. The results show that the convergence rate of the WSA 
algorithm is superior to the HHO, GOA, GA, and PSO algorithms. The 
existing techniques often suffer from premature convergence, local 
optimal trapping, and higher computational complexity when applied to 
the machine survival rate analysis domain. 

5. Conclusion 

The heart of the manufacturing industry is the rotating machines and 
improving the survival rate of these machines is one of the important 
priorities of the maintenance engineers. To ensure a proper maintenance 

Table 3 
Input data feature values for testing data.  

Input data features Device-1 Device-2 Device-3 

Minimum range Maximum range Minimum range Maximum range Minimum range Maximum range 

Vibration  21.4793  68.4784  18.4748  72.4783  19.4793  66.4839 
Volt  117.4760  239.5791  109.3290  242.6419  112.7590  234.5672 
Pressure  56.3021  143.9503  62.4803  154.3792  62.4829  150.4783 
Rotate  213.2895  638.4893  181.4783  640.3879  234.4783  636.5784  

Fig. 5. Performance evaluation of proposed SFEC-WSA approach using (a) 20% of training data (b) 40% of training data (c) 80% of training data.  
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strategy. Here, the serves as an intelligent predictive model that can 
evaluate the survival rate of the machinery and determine the type of 
fault. Here different deep learning and machine learning techniques are 
used to achieve this objective. This work mainly aims to improve the 
accuracy and reliability of survival node analysis via a novel technique 
to minimize the high complexity of the machines. The survival analysis 
is determined to identify the failure of the device from the 

manufacturing sector. The existing RL-DDQN, DeepPAMM, SSMTL, and 
SHAP methods are obtained to detect device failure with large data. But 
it could not process the analysis with high dimensional data and could 
not able to detect the failure of the device with input data. So in order to 
overcome the issue in this paper, the SFEC-WSA approach is proposed 
for analyzing the survival time of devices and minimizing their failure 
probability. The unbalanced dataset is used to analyze the survival time 

Fig. 6. Performance analysis based on training data for 20%.  

Fig. 7. Performance analysis for 40% of training data.  

Fig. 8. Performance analysis for 80% of training data.  

Table 4 
Comparison of the proposed method with different parameters.  

Metrics Training 
data 

RL- 
DDQN 

Deep 
PAMM 

SSMTL SHAP Proposed 
SFEC-WSA 

Accuracy 20%  57.2 60  46.5  53.8 68.5 
40%  77.2 44.8  60.3  53.2 85.4 
80%  64.1 73.8  57.5  86.9 97.2 

Precision 20%  56.4 63.8  55.9  50.2 69.7 
40%  62.3 44.6  73.6  79.5 86.7 
80%  43.2 46.8  70.8  80.1 97.8 

Recall 20%  42.3 56.7  60.2  51.8 66.23 
40%  75.2 79.1  53.6  62.1 83.52 
80%  57.4 44.8  85.3  76.4 96.8 

F1-score 20%  56.9 41.3  60.1  52.4 67.90 
40%  75.3 53.5  45.3  56.1 84.81 
80%  74.1 43.8  51.2  78.2 97  

Fig. 9. Execution time analysis for Device-1.  

Fig. 10. Execution time analysis for Device-2.  
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of structured data with the help of some parameters such as vibration, 
rotation, voltage, and pressure. The predictive maintenance problem 
affects the dataset from unbalanced classes so three types of device data 
such as Device-1, Device-2, and Device-3 are utilized. For achieving the 

better performance rate of the proposed SFEC-WSA approach, a few 
performance evaluation parameters like precision, accuracy, execution 
time, recall, and F1-score are utilized. The 20%, 40%, and 80% of 
training data sizes are included to determine the performance of the 
proposed SFEC-WSA approach. The performance rate of 20% is lower 
compared to the remaining 40% and 80% of training data. The perfor
mance of the proposed method is enhanced by attaining the accuracy, 
precision, recall, and F1-score of 97.2%, 97.8%, 96.8%, and 97% 
respectively for 80% of training data. The proposed SFEC-WSA approach 
achieved an execution time of 0.44 s, 0.3 s, and 0.33 s that are obtained 
from Device-1, Device-2, and Device-3 respectively. The experimental 
result showed that the proposed SFEC-WSA method attained superior 
performance than other conventional methods. In the future, the pro
posed method is applied to the real-world dataset for further enhance
ment of the system. 
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