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ABSTRACT Diabetic Retinopathy (DR) evaluations are increasingly being automated using artificial 

intelligence. Diabetes-related retinal vascular disease is a major cause of blindness and visual impairment 

worldwide. Therefore, automated DR detection devices would greatly aid in reducing visual impairment due 

to DR through early screening and treatment. Researchers have provided many techniques for picking out 

abnormalities in retinal images during the past several years. In the past, automated methods for diagnosing 

diabetic retinopathy required a human to extract information from retinal images before passing them on to a 

classifier. This study takes a novel two-pronged approach to automated DR classification to solve the issues. 

Due to the low positive instance percentage of existing asymmetric, we segment O.D.s and B.V.s with an 

enhanced version of an improved contoured convolutional transformer (IC2T). We develop a contoured 

optical disc (OD), a blood vessels (BV) detection module, and a dual convolutional transformer block that 

combines local and global contexts to make trustworthy associations. A second-stage Improved Coordination 

Attention Mechanism (ICAM) network is trained to recognize retinal biomarkers for DR such as 

microaneurysms (M.A.), haemorrhages (H.M.), and exudates (EX). With an average accuracy of 96%, 97%, 

and 98% on EyePACS-1, Messidor-2, and DIARETDB0, respectively, the suggested technique has proven 

itself to be at the field's cutting edge. Comprehensive testing and comparisons to established methods support 

the proposed strategy. 

INDEX TERMS Contoured detection module, Diabetic retinopathy, Dual convolutional transformer block, 

Improved coordination attention mechanism, Improved contoured convolutional transformer, Optic Disk 

Segmentation 

I. INTRODUCTION 

A. BACKGROUND OF DIABETIC RETINOPATHY 

In the Western working-age population, diabetes is the 

most prevalent metabolic illness, and DR is the most 

common consequence of diabetes. Consistent DR screening 

has been shown to cut the risk of severe DR-related visual 

loss by 90% [1]. Retinal specialists routinely use a disease 

severity scale [2] to provide a numerical value for the 

degree to which patients are affected by DR in clinical 

settings. When defining the level of damage caused by DR, 

the International Clinical Diabetic Retinopathy (ICDR) 

disease severity scale is the gold standard [3]. From no DR 

(level 0) to proliferative DR (level 4) on a five-point scale, 

the standard proposes non-proliferative DR (level 3) [4-6]. 

Microaneurysms (M.A.) are indicative of a mild case of the 
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illness. The presence of more than M.A. or haemorrhages 

(HEM) is used to define level 2; however, level 3 is 

indicated by the presence of evident venous beadings or 

substantial intraretinal microvascular abnormalities 

(IRMA) [7]. Active or pan-retinal photocoagulation-treated 

neovascularizations (N.V.) or vitreous haemorrhages 

suggest a level 4 diagnosis. Level 4 DR can cause 

permanent visual loss without treatment. Hard exudates 

(HE) and cotton wool spots (CWS) are also common 

lesions found in the retina of people with DR [8]. 

 
B. ICDR CLASSIFICATION FOR MACULAR EDEMA 

 

The ICDR (International Clinical Diabetic Retinopathy 

Disease Severity) classification is used to determine the 

severity of diabetic retinopathy, an eye condition caused by 

diabetes. While diabetic macular edema (DME) is a 

particular disorder that can develop with diabetic 

retinopathy, it is not explicitly classified by the ICDR. The 

ICDR classification system, on the other hand, is primarily 

concerned with diabetic retinopathy as a whole. 

The ICDR categorization system divides diabetic 

retinopathy into numerous stages, which are as follows: 

No Diabetic Retinopathy (No DR): There are no indications 

of diabetic retinopathy at this stage. 

Mild Non-proliferative Diabetic Retinopathy (Mild NPDR): 

Microaneurysms are present at this stage. Microaneurysms 

are microscopic, balloon-like swellings in the retina's tiny 

blood capillaries. 

Moderate Non-proliferative Diabetic Retinopathy (Moderate 

NPDR): More severe abnormalities in the retinal blood 

vessels, such as haemorrhages and hard exudates (lipid 

deposits), become visible at this stage. 

Severe Non-proliferative Diabetic Retinopathy (Severe 

NPDR): This stage is characterised by more substantial 

obstructions in the retinal blood vessels, which can result in 

decreased blood supply to regions of the retina. 

Proliferative Diabetic Retinopathy (PDR): The most 

advanced stage of diabetic retinopathy involves the 

formation of aberrant blood vessels in the retina. These new 

blood vessels can be unstable, resulting in bleeding into the 

vitreous gel of the eye and visual loss. 

C. ALLENGES IN FUNDUS IMAGES 

Images of the retina captured with a fundus camera are used 

to assess DR. Image capture presents a number of 

difficulties [9], including light noise and low contrast, both 

of which negatively impact performance. Variations in size, 

shape, and colour make DR lesion segmentation a difficult 

process [10]. Another obstacle in this field is the 

identification of the optic disc (OD), whose circular form is 

similar to that of retinal lesions. Because of this, the area is 

frequently misidentified as a lesion. In order to address 

these issues, a method is described for identifying and 

categorizing retinal lesions [11]. 

D. CHALLENGES IN DL TECHNIQUES 

Ophthalmologists have a difficult and error-prone job of 

manually detecting DR. Thus, an automated approach is 

necessary for fast and accurate identification. Several 

algorithmic approaches to DR lesion identification have 

been presented in the literature [12]. Hough Transform 

Algorithms (HTAs) and convolutional neural networks 

(CNNs) are employed for EX identification [13]. In 

addition, smart edge recognition and histogram 

equalization are used to boost image quality. The O.D. is 

an anatomical term. Thus, this also prevents any inference 

from it [14, 15]. 

Like classification, automatic medical picture segmentation 

has benefited substantially from the development of deep 

learning techniques. CNNs are algorithms that "learn" from 

training data that has been tagged. This requires analyzing 

more sophisticated visual features before ultimately 

classifying entire pictures as desired when dealing with 

imaging data. Recent research [17] shows that the accuracy of 

these algorithms is on par with or even higher than that of 

human specialists. CNNs are getting close to human levels of 

performance in automatic DR detection and grading, but they 

still can't be easily understood [18]. The need for more 

transparency in the findings obtained by deep learning 

algorithms is a potential roadblock to their use in actual 

clinical settings [19]. Networks that have been taught to 

identify the outliers employed by human experts in the grading 

process might be used to solve this issue. Many retinal 

abnormalities are very tiny or have characteristics that make 

them difficult to diagnose [20, 21] appropriately. Not only is 

it difficult to collect enough photos to train algorithms capable 

of this task, but manually annotating each important pixel in 

those images is both labour-intensive and time-consuming 

[22]. 

E. CONTRIBUTION TO THE SEGMENTATION MODEL 

Combining the advantages of the transformer and the U-

shaped architecture may fully realise both benefits. 

Combining these two cutting-edge methods strengthens 

segmentation by making greater use of both local traits and 

global contextual information. As a result, the following 

contributions are highlighted: 

• The study created an advanced segmentation 

method for medical images called IC2T. A dual 

convolutional (DC) basis makes up the proposed 

model's U-shaped architecture. 

• The suggested approach may combine local and 

global settings to build trustworthy relationships. 

Convolutional kernels of various sizes capture 

multi-scale information for use by the DC 

transformer blocks. 

• The interpretability of the model is improved by 

combining short- and long-range attention 

techniques to extract local characteristics and 

capture long-range interdependence. 
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• Using conventional CV methods, the contour 

detection module may zero in on regions of 

interest and hone in on superfluous contoured 

segmentation data. 

• To further improve segmentation accuracy, a 

hybrid grasshopper-based optimization approach 

(G-BAT) is also presented. 

F. CONTRIBUTION TO THE CLASSIFICATION MODEL 

Integral framework of Segmentation and Classifier is 

shown in Figure 1. 

 

FIGURE 1. Integration of Segmentation and Classifier 

Here's a quick rundown of each component in the diagram: 

Input Data: This is where your raw data enters the 

framework, such as photos or sensor data. 

Data Preprocessing: Various data preprocessing operations 

including as normalisation, data augmentation, and feature 

extraction are performed in this step to prepare the data for 

segmentation and classification. 

Segmentation: The segmentation component finds regions of 

interest within the input data using techniques such as 

Convolutional Neural Networks (CNNs) or Region Proposal 

Networks (RPNs).  

Segmented Data: This section contains the segmentation 

step's output, which includes the regions or items of interest 

detected in the input data. 

Classifier: The classifier employs machine learning or deep 

learning models to classify and predict the segmented data as 

input.  

Output: The framework's final output, which may include 

flood or earthquake detection predictions, judgements, or 

alarms. 

In the first stage, innovative Gaussian space-scale generic 

augmentation settings were used to pre-process and augment 

the data. 

The research recommends an enhanced coordination attention 

mechanism network (ICAMNet) that takes into account the 

spatial location relationship. 

A convolution-coordinated attention mechanism is one of the 

three primary building blocks of a CAMNet. In the first place, 

spatial and spectral characteristics are completely extracted 

using CNN in the convolution module. Second, the linear 

module intends to provide a feature map with more data. The 

developed CAM also takes into account both axes of spatial 

information. 

The Rock Hyrax Swarm Optimization (RHSO) model handles 

the hyper-parameter tuning procedure. 

The suggested approach has been trained using 11841 retinal 

fundus pictures from three publicly available datasets. 

G. PAPER ORGANIZATION 

In the first section, we discuss the history of DR, its 

difficulties, and the role that research has played in 

addressing these issues. In Section 2, we provide a problem 

definition and a summary of related research on DR 

segmentation and classification. Sections 3 and 4 detail the 

resources and the short approach used. In Section 5, we see 

the experimental design with the validation analysis. 

Section 6 wraps up the findings and discusses what comes 

next. 

II. RELATED WORKS 

A reformed capsule network is built for the diagnosis and 

categorization of diabetic retinopathy by Kalyani et al. [23]. 

Fundus pictures have their characteristics extracted using a 

convolution and main capsule layer, and then the class capsule 

layer and softmax layer are used to assess the likelihood that 

the image belongs to a certain class. Using the dataset, we 

verify the efficacy of the proposed reformed network across 

four performance metrics. On healthy retina, stage 1, stage 2, 

and stage 3 fundus pictures, the accuracy of the created 

capsule network is 97.98%, 97.65%, 97.65%, and 98.64%, 

respectively. 

Zbay [24] provided a novel multi-layer architecture for 

automated DR stage detection. In the ADL system's 

preprocessing step, a threshold value is chosen based on the 

results of the image histogram to help find retinal lesions. The 

picture is then segmented using this method. To further 

automate the process of extracting segmented retinal 

characteristics, a tag-efficient architecture called ADL-CNN 

has been designed. This scheme operates in two phases. In the 

first, pictures are picked to learn either straightforward or 

advanced retinal features based on the accuracy labels 

included in the training set. Second, the important 
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characteristics of the lesions and the segments of interest 

within the retinal picture are presented as masks. The 

suggested ADL-CNN model's performance is measured 

against that of the state-of-the-art approaches on the same 

dataset. Statistics, including the F-measure, sensitivity, 

specificity, and classification accuracy, are used to evaluate 

the system's performance. Using the EyePacs dataset, which 

consists of 35,122 retinal pictures, the ADL-CNN model was 

able to achieve 99.66% accuracy, 93.76% S.E., 96.71% S.P., 

and 94.58% F-measure. In this regard, it is fair to say that the 

suggested technique performs admirably when applied to a 

wide variety of fundus pictures for the purpose of identifying 

DR lesions and grading their severity. 

Uppamma and Bhattacharya [25] have zeroed in on 

information vital to the forecasting of diabetic retinal illness. 

Complete blindness is the end result of diabetic retinopathy, a 

chronic illness induced by diabetes. Early detection of the 

condition is essential for preventing eyesight loss. The dataset 

utilized is an open-source one obtained through the IEEE data 

port. Before performing lesion segmentation, we pre-

processed the data with the median filtering approach. The 

most important characteristics were supplied to the 

SqueezeNet classifier, which predicted, and the data was then 

exposed to the Taylor African Vulture Optimization (AVO) 

method for hyper-parameter tuning. The EHR administrator 

then had access to the final outcome stored in the blockchain 

architecture, guaranteeing that only authorized parties could 

view the prediction results and any associated patient data. By 

comparing the classifier's performance to that of previous 

studies, we find that the suggested model outperforms the 

state-of-the-art models in terms of accuracy. 

Ohri and Kumar [26] have applied transfer learning to the 

downstream job of diabetic retinopathy (DR) severity 

identification by fine-tuning the network when different 

subsets of medical data are available. The experimental results 

show that the efficiency of the medical image classifier, when 

trained on complete training data, is greatly improved by 

supervised pre-training on ImageNet, followed by fine-tuning 

pictures. Less clear, however, is how different data subsets 

impact fine-tuning performance and whether or not this 

learning is label efficient. Therefore, we examine the model's 

efficacy when trained on 20%, 40%, 60%, and 80% of the total 

labelled data for the DR classification task, with findings 

indicating that supervised fine-tuning performs poorly when 

the model is trained in the low-data regime. When trained on 

all available data, the suggested model has a high level of 

performance (test accuracy of 0.8010, AUC of 0.86, F1 score 

of 0.6477, and Cohen's kappa score of 0.7007) but suffers in 

the low data regime. This point to the limitations of supervised 

learning when only a small amount of labelled data is available 

for model training. Our approach therefore provides a 

springboard for future investigation into improving 

performance in low-data settings. 

Parthiban and Kamarasan [27] have presented an intelligent 

coyote optimisation algorithm with a deep learning-based DR 

detection and grading (ICOA-DLDRD) model using retinal 

fundus pictures. The ICOA-DLDRD method is meant to 

detect DR in fundus photographs of the eye. At its core, the 

ICOA-DLDRD algorithm uses a noise-reduction method 

based on Gabor filters (G.F.) and a method for finding the best 

way to divide up a large image into smaller ones. In addition, 

the glowworm swarm optimization (GSO) algorithm is used 

to generate appropriate main seed locations and thresholds for 

the region-expanding segmentation method. For feature 

extraction, we also create a SqueezeNet with a class attention 

learning (CAL) layer. Lastly, we use COA with a deep 

extreme learning machine (DELM) classifier to find and grade 

DR. We use COA to optimise the DELM model's penalty 

parameter C and kernel parameter gamma. We tested how well 

the ICOA-DLDRD method worked using the MESSIDOR 

dataset as a reference. The results showed that our method was 

more accurate than other state-of-the-art methods, with a 

maximum accuracy of 99.65%. 

Bansode et al. [28] hope to create a new method of DR 

detection that relies on deep learning. In this case, we utilize 

the incorporation of 'Optimized Iterative Thresholding (O-IT)' 

for precise segmentation of blood vessels. The first innovative 

aspect of this study is the development of a hybrid meta-

heuristic Shark Smell-Jaya Optimisation (SS-JO) method for 

optimizing the thresholding strategy to improve blood vessel 

segmentation and classification. A deep learning framework 

known as optimized long short-term memory (LSTM) is used 

in place of CNN. The second originality of this study is the 

suggested model's use of SS-JO to optimize LSTM 

parameters, reducing the network's complexity and making it 

more suitable for use in practical applications. 

Fundus images can help identify the phases of DR in 

patients, and Naik et al. [29] have developed a distinctive 

suggested model. It can analyze a fundus picture for signs of 

retinopathy and make an educated guess as to which stage of 

the illness it represents. Nonproliferative are the two main 

categories under which DR can be placed. The suggested 

model is capable of differentiating between no DR, mild DR, 

moderate DR, severe DR, and PDR thanks to its training. 

Researchers and clinicians alike will benefit from rapid DR 

patient identification. The current state of affairs makes it 

highly time-consuming for physicians to manually analyze 

each individual nerve cell from fundus images. Therefore, in 

this study, we present a convolutional neural network-based 

model with data augmentation for DR classification from 

fundus pictures. Models like DenseNet121, DenseNet169, 

ResNet50, and InceptionV3 may all be trained on powerful 

GPUs with the help of this enriched dataset. These models 

attained accuracy levels of 96.64, 95.95, 95.71, and 94.73%. 

DenseNet121 has the highest reported accuracy, at 96.64 

percent, when compared to other SOTA models. 

Qaid et al. [30] presented the automated diagnosis system's 

accuracy in detecting DR and its severity, and they analyzed 

the results. Segmentation of fundus images using fuzzy 

entropy multi-level thresholding is the primary topic of this 
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article. The research set out to find the best possible settings 

for detecting DRs and their severity. To begin, we built a 

model of the retina as an image, one that can be used across a 

wide range of retinal and image properties. The retinal model 

was used to create 45,000 photos in total. Second, we 

quantified the effectiveness of DR detection and the severity 

levels by conducting a feasibility and consistency study using 

a tailored Monte Carlo statistical approach. Guaranteed DR 

detection is achieved under the following conditions: Finally, 

the reliability of these circumstances was assessed by 

contrasting synthetic retinal pictures with those available to 

the public. Test findings showed that DR detection success 

might be predicted based on the analysis's conditions. 

In this study, Nahiduzzaman et al. [31] propose an 

innovative automated method for DR detection. Contrast 

Limited Adaptive was used as a preprocessing step on the 

fundus images (F.I.s) to bring out the lesions. Features were 

extracted using a parallel convolutional neural network 

(PCNN), and DR was classified using an extreme learning 

machine (ELM) approach. The PCNN architecture employs 

fewer parameters and layers than the comparable CNN 

architecture, which reduces the time needed to extract unique 

features. Both the Kaggle DR 2015 competition (Dataset 1; 

34,984 FIs) and the APTOS 2019 datasets (3,662 FIs) were 

used to assess the technique's efficacy, and the findings are 

encouraging. The suggested method achieved 91.78 and 97.27 

percent accuracy on the two datasets, respectively. One of the 

study's corollary findings, however, was that the suggested 

framework was robust across a variety of dataset sizes and 

shapes, including both symmetrical and asymmetrical ones. In 

addition, the proposed method outperformed state-of-the-art 

models in terms of classifier performance metrics, model 

parameters and layers, and prediction time, which would be of 

great assistance to medical professionals in correctly detecting 

the DR. 

In [32], Alwakid et al. offer a deep learning (DL) model that 

accurately detects all five phases of DR. A contrast-limited 

adaptive histogram is used to improve images in Case 1, 

whereas in Case 2, the images are not improved. The dataset 

was then augmented using the identical parameters used in 

both situations to ensure equality. The created model 

outperformed prior techniques for detecting the five phases of 

DR using Inception-V3-applied datasets, with an accuracy of 

98.7% for case 1 and 80.87% for case 2. It was shown that 

including CLAHE and ESRGAN in a model enhances both its 

performance and its capacity for learning. 

Using convolutional neural networks, Mercaldo et al. [33] 

present a method for automatically detecting the presence of 

diabetic retinopathy in ocular angiography. Specifically, two 

models are proposed: the first is meant to differentiate between 

normal and diseased eyes, while the second is meant to 

differentiate between nonproliferative and mild to moderate 

proliferative retinopathy. Our results show that the suggested 

models can be useful tools for clinicians, with an accuracy of 

0.98 for the first model and 0.91 for the second. Also, the 

proposed method tries to find the disease in the angiography 

by using two different class activation mapping algorithms 

that show on the images the areas where the disease is showing 

itself. This is done to give doctors and patients more 

confidence in the model's diagnosis by giving them some way 

to explain it. We also offer a similarity score to measure the 

dissimilarity between heatmaps produced by the same model's 

class activation mapping algorithms in order to assess the 

stability of the model. 

To better identify DR events and evaluate their developing 

phases, a unique Gannet approach is presented by 

Krishnamoorthy et al. [34]. There are six main stages of DR 

that may be detected and categorized using the GO-DBN-

WKELM method: normal, mild DR, moderate DR, severe 

DR, and proliferative DR. First, the Deep Belief Network 

(DBN) model reduces the feature dimensions of the original 

datasets to extract the most pertinent information. The 

recovered pictures are then put through the suggested GO-

DBN-WKELM classification model, which is able to reliably 

detect and categorize fundus images according to severity. 

Incorporating a wavelet into the G.O. algorithm is what 

contributes most to the improved detection performance. The 

convergence speed of the classifier is improved using the G.O. 

method, and the kernel parameters of the WKELM are 

optimized as well. Three datasets, MESSIDOR, 

DIARETDB1, and IDRiD, are used to evaluate the proposed 

classifier. Different performance measures, including 

accuracy, precision, recall, and F-measure, are used to 

evaluate the suggested classification model's efficacy in 

detecting DR The suggested GO-DBN-WKELM classifier 

performed very well in simulations, with an accuracy of 

around 98% on the MESSIDOR dataset and 97.8% on the 

DIARETDB1 dataset. Results like this highlight providing an 

effective, automated alternative to manual methods that can 

help eye specialists diagnose and treat patients in a timely 

fashion. 

Lin and Jiang [35] have proposed a preprocessing method 

to improve the picture's characteristics. Based on the study's 

findings, preprocessing is a viable option for making more 

information accessible to the training model. As a result, this 

research enhanced the EfficientNet model to better classify 

data at the DR level. The outcomes also showed an 

improvement in model accuracy from 0.7727 to 0.7920 with 

regard to the categorization of DR phases. The improved 

EfficientNet also outperformed MobileNet (0.54) and the 

original EfficientNet (0.922) in terms of the average area 

under the ROC curve across all five classes, with a value of 

0.926. Finally, an application programming interface (API) 

was used in this work to construct the suggested system, 

allowing users to input a fundus picture and receive the DR 

findings. 

To categorize the DR picture, Venkaiahppalaswamy et al. 

[36] utilize a powerful hybrid binocular Siamese with a deep 

learning technique. To begin, the stage is implemented to filter 

out background noise. The use of a cross-guided bilateral filter 
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(CGBF) is suggested for this purpose. Once an image has been 

preprocessed, the feature extraction step may be used to pull 

out certain characteristics from it. There is a new feature 

extraction approach called the wavelet-based Chimp 

optimization algorithm (WBCOA). The optical disc (O.D.) 

and blood vessels (B.V.) are then segmented using open-

closed watershed management (OCWSM) after feature 

extraction. In this study, we suggest using AlexNet and 

GoogleNet with the SVM model, both of which are based on 

the binocular Siamese network architecture. The proposed 

hybrid DL network takes as input the O.D. and B.V. that have 

been segmented. At last, the extracted pictures are fused, and 

the SVM model is utilized to categorize them. The 

DIARETDB0 (DB0) and DIARETDB1 (DB1) datasets are 

used to evaluate the suggested approach, which is 

implemented in Python. The accuracy of the projected hybrid 

DL network was 94% on DB0 and 94.83% on DB1. The 

results of the suggested model are compared to those of other 

methods as well. The suggested approach used mean and 

standard deviation (S.D.)-based statistical analysis on the DR 

picture to get useful results. 

To identify and categorize retinopathy illness from retinal 

pictures, Maithili et al. [37] have presented a novel hybrid 

strawberry-based convolution neural framework (SbCNF). 

The retinal veins are cut using a variety of data sources. In this 

case, DRIVE datasets serve as the basis for the entire 

operation. This study is implemented in the Python 

programming language. In addition, this research shows how 

retinopathy detection software might be enhanced in the 

future. Traditional classification model techniques were used 

to verify the implementation results for things, etc. The results 

show that the devised method outperformed the competition 

in retinopathy recognition accuracy by virtue of its useful 

benefits, such as reduced computational complexity. 

A. PROBLEM STATEMENT 

There have been numerous great outcomes from research 

using deep CNN architectures for DR diagnosis. However, 

there are also several limits and restrictions. The following 

is a description of them. 

• Instead of recognizing the location of DR lesions 

in fundoscopic pictures, current CNN models 

exclusively focus on grading DR from beginning 

to conclusion. Here, the pictures are sent straight 

to CNN, and the DR severity is determined by the 

images' outputs. Nevertheless, ophthalmologists 

place a premium on knowing specifics about the 

clinical presentation of DR lesions. 

• In particular, a deep convolutional neural network 

(CNN) model requires large and well-annotated 

data collection. Getting it and making it usable are 

both very time-consuming and expensive 

processes. 

• For some current CNN models, the complex lesion 

architecture that DR causes can be challenging to 

train. Many minor lesions, such as M.A. and 

HEM, were difficult to find in CNN's limited 

patch of fundus pictures because of their vague 

forms. Therefore, it is crucial for DR detection 

algorithms to learn lesions with fine details. 

III. MATERIALS 

A. Two of the most commonly utilized public datasets for 

evaluating the performance of the proposed system were 

Messidor-2 and DIARETDB0. 

B. EYEPACS-1 

About 8980 retinal pictures were included in the EyePACS-

1 dataset [38]. There are 7552 healthy subjects, 842 mild 

cases, 545 moderate cases, 54 severe cases, and 95 PDR 

cases in the EyePACS-1 dataset. 

C. MESSIDOR-2 

There are 1748 photos of the back of the eye (the retina) in 

the Messidor-2 collection [39]. There are only 1017 

"normal" photos and 270 "mild" and "PDR" images in the 

collection. The Topcon digital F.I. camera used to take the 

digital F.I.s for the Messidor-2 dataset has a 45-degree field 

of view. 

D. DIARETDB0 

For research on DR detection and classification, you can 

use the DIARETDB0 dataset [40]. There are 130 fundus 

photos in the DIARETDB0 dataset; 110 are categorized as 

DR and 20 are categorized as normal F.I.s. A digital F.I. 

camera with an unspecified field of view (about 50 degrees) 

was used to capture these images. The information is 

applicable to real-world situations and may be used to 

evaluate the efficacy of diagnostic methods. 
TABLE I 

DATASET DELIVERY OF DIARETDB0 

Severity 

Grade 

EyePACS-1 Messidor-2 DIARETDB0 

Normal 7552 1017 20 

Mild 842 270 50 

Moderate 545 347 35 
Severe 54 75 15 

PDR 95 35 10 

Table I shows the distributions of DR severity grades 

among the datasets Messidor-2, EyePACS-1, and 

DIARETDB0. Figure 2 displays some representative photos 

taken from the available data sets. 

 

FIGURE 2. Sample images from the datasets 

IV. METHODOLOGY 
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In this study, we introduce a unique approach to DR detection 

based on retinal fundus pictures. DIARETDB0 are the three 

open-source databases employed here. Preprocessing methods 

include picture scaling, GCE (Green Channel Extraction), and 

top-bottom hat transformation to improve the quality of the 

F.I.s. Hybrid optimization is then used to fine-tune the model's 

parameters, and a convolutional transform network is used to 

segment the OD. Finally, a better picture dataset is utilized in 

conjunction with the refined model of the attention process to 

diagnose DR. A number of performance criteria, including 

sensitivity, accuracy, precision, F1-score, specificity, and area 

under the curve, are employed to assess the viability of the 

proposed method. 

A. PREPROCESSING AND DATA AUGMENTATION 

1) PREPROCESSING 

The suggested method was evaluated using Messidor-2, 

DIARETDB0, and EyePACS-1. In all, 10,966 retinal 

fundus images (from the DIARETDB0-130 databases) are 

taken into account here. The datasets' locations are shown 

in Table 1 for EyePACS-1, DIARETDB0, and Messidor-2. 

The size of the F.I. may have an effect on how well a deep 

learning model performs. To address this issue, we 

uniformly resized all of the photos to 256 pixels on each 

side. The loss of the optic disc and other major blood 

vessels makes direct resizing of F.I.s challenging. Bicubic 

interpolation was used to resize the retinal F.I.s while 

preserving their aspect ratio. Figure 3 shows that, compared 

to the red and blue channels, the green channel in F.I.s 

conveys more information, making it a good fit for our 

study. Retinal images benefit from a top-to-bottom hat 

modification. Figure 4 shows how various preparatory 

measures are taken. 

 

FIGURE 3. FI RGB channel. (a) OI (Unique Image) (b) RCH; (c) GCH, (d) 
BCH 

 

FIGURE 4. Preprocessing stages. (a) Unique Image, (b) Resized Image, 
(c) G_C Image, (d) TB_H_T Image 

2) DATA AUGMENTATION 

One of the most important considerations for efficient DL 

model processing is the quantity of the training dataset. 

Thus, a large dataset is necessary for training deep learning 

networks to prevent overfitting and generalization issues. 

The dataset has a highly skewed distribution across classes, 

with the vast majority of pictures being in category 0 

(normal). There is a risk of misclassification because of the 

high imbalance in this dataset. To clean up the fundus 

pictures and increase the size of the retinal dataset, we 

employed data augmentation methods. Here is a rundown 

of the main data augmentation procedures we ran. 

• Images were randomly rotated between 0 and 360 

degrees. 

• Shearing: Sheared at an arbitrary angle between 

twenty and two hundred degrees. 

• Vertically and horizontally flipped images were 

used. 

• Images were randomly zoomed by a factor of 

between (1/1.3 and 1.3). 

• Images were cropped at random to be 85–95% of 

their unique size. 

• Randomly shifting images between the range of -

25 and +25 pixels served as translation. 

Several instances of post-augmentation images are exposed 

in Figure 5. 

 

FIGURE 5. Using pre-processed images, multiple augmentation 
procedures were functional to augment the retinal dataset 

B. OPTIC DISC (O.D.) AND BLOOD VESSEL (B.V.) 
SEGMENTATION 

If IC2T is a specific model or framework for image 

segmentation, I recommend referring to the official 

documentation or research papers associated with it for 
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detailed information on how to use it for segmentation 

tasks. Additionally, you may want to check for any code 

repositories or GitHub projects related to IC2T for 

implementation examples and guidance. 

 

For image segmentation in general, there are several well-

known models and frameworks, such as U-Net, Mask R-

CNN, FCN (Fully Convolutional Network), and SegNet, 

which are commonly used for tasks like semantic 

segmentation and instance segmentation.  

Three parts of the suggested approach are elaborated upon 

in this research. The basic framework is shown first. 

Second, the component's deeper features are handled with 

better precision because of the dual convolutional 

transformer's architecture. Thirdly, our proposed model 

includes a contour detection module, which helps the 

network better extract edge features that aren't immediately 

apparent. 

1) OVERALL ARCHITECTURE 

 

    Attention Mechanism: The "attention mechanism" may 

be employed to focus on important regions or features 

within the segmented retinal images when making a 

classification decision. This can help improve the accuracy 

of diabetic retinopathy classification. 

 

In practice, the segmentation component (IC2T Model) 

would be used to preprocess retinal images, identifying and 

isolating the regions of interest. The segmented regions or 

features would then be fed into the classification 

component (Rock Hyrax Swarm-Based Coordination 

Attention Mechanism) for diagnosing diabetic retinopathy 

based on the coordinated analysis of these features. 

 

To gain a detailed understanding of this specific approach, 

including the architecture, training process, and 

performance metrics, you would need to refer to the 

original research paper or documentation associated with 

the model. Additionally, if code or pre-trained models are 

available, you can use them to implement and experiment 

with the system for your specific application. 

 

ICDR: The abbreviation "ICDR" is not a widely 

recognized standard or classification system in the context 

of diabetic retinopathy diagnosis. Therefore, it's essential 

to clarify what "ICDR" stands for and how it relates to your 

research. It's possible that "ICDR" could be a novel or 

specific classification system or dataset created for your 

research, and you should provide a detailed explanation of 

it in your manuscript. 

 

    ETDRS: The term "ETDRS" stands for "Early 

Treatment Diabetic Retinopathy Study." ETDRS is a 

widely recognized and established grading system and 

classification for diabetic retinopathy used in clinical 

evaluation, research, and clinical trials. It is often 

considered a gold standard for assessing diabetic 

retinopathy severity. If ETDRS or any other established 

grading system is relevant to your work, you should discuss 

its role and relevance in your research, especially if you are 

comparing or benchmarking your results against it. 

Regarding the phrase "proposes non-proliferative DR (level 

3)," it's necessary to provide context and clarification. In 

the context of diabetic retinopathy, "DR" typically stands 

for "Diabetic Retinopathy," and "non-proliferative" refers 

to the stage of the disease that precedes the more severe 

proliferative diabetic retinopathy (PDR). The term "level 3" 

likely refers to a specific severity level within the non-

proliferative diabetic retinopathy stage, but without 

additional context or explanation, it may be unclear to 

readers. 

 

The innovative model's architecture is based on Swin-Unet 

[41], and it takes the form of a U made up of connections. 

The encoder and decoder parts of the U-shaped architecture 

extract and reconstruct information, respectively, so that 

both local and global characteristics may be captured. The 

skip connections, which allow for the integration of low-

level and high-level information, improve the model's 

accuracy and robustness. Multiple blocks and modules 

handle the processing of sequences of varying resolutions. 

These manipulations provide the model with a 

comprehensive means of extracting characteristics and 

capturing prospective data. In sum, this architecture 

improves the model's ability to extract and apply 

characteristics from the input data. 

In the encoder stage, the input picture is written down as 

InputR (H,W,C), where H and W stand for the input image's 

height and width, respectively, and C stands for the input 

image's channel count. Based on this research, C is set at 3. 

The standard approach to patch embedding [42] includes 

segmenting an input picture into 4x4 pieces that do not 

overlap. Single-size convolution kernel models, on the other 

hand, are easily overfit and fail to capture all of an image's 

information because of their limited generalization capacity. 

Multi-scale sampling is a method for fixing these issues by 

first sampling the image at several scales and then piecing the 

results back together. With this method, you can save nuanced 

details while still getting the job done. Convolutional 

operations with four distinct kernel sizes (4 4, 8 8, 16 16, and 

32 32) are used in the multiple-scale sampling procedure. The 

patch-embedding method results in a patch that is H/4 W/4 C 

in size. 

In Section 4.2.2, we describe the gated module's batch 

convolution, ReLU, and sigmoid layers in detail and present 

formulaic expressions for the proposed dual convolutional 

(D.C.) transformer structure. It does this by merging feature 

maps from the present and higher layers, filtering out noise in 

the process to get richer feature data. In the gated module, edge 

information from contour detection is combined with the 
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encoder's one-dimensional features to generate two-

dimensional features. The gated module receives the fusion 

information and combines it with additional modules, both of 

which provide intermediate data. The gated module's output 

will be integrated into the decoder's middle stages. The 

computation is written as a suggested block with two layers. 

�̂�𝑖 = 𝑅𝑒𝑠ℎ𝑎𝑝𝑒(𝑋𝑖)   (1) 

𝐶𝑖 = 𝐶𝑜𝑛𝑣(�̂�𝑖)    (2) 

𝑡𝑜𝑘𝑒𝑛 = 𝐺𝑎𝑡𝑒𝑑(𝐶𝑖 , 𝑐𝑜𝑛𝑡𝑜𝑢𝑟𝑡𝑜𝑘𝑒𝑛𝑖
+ �̂�𝑖)  (3) 

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝐷𝐶(𝑡𝑜𝑘𝑒𝑛)   (4) 

where 𝑋𝑖 represents derived from the contour detection 

module and gated stands in for the 𝑔𝑎𝑡𝑒 𝑚𝑜𝑑𝑢𝑙𝑒 (𝑖 =
 1, 2, 3). 

Up-sampling is accomplished with the help of a linear 

extension at the decoder step. All the collected characteristics 

are then used to produce the final results, which require 

mapping sequences linearly to a high-dimensional space. 

2) DUAL CONVOLUTIONAL (D.C.) TRANSFORMER 
BLOCK 

Figure 6 depicts the layout of the D.C. transformer chunk. 

 

 

FIGURE 6. D.C. Transformer Block Architecture A) Basic transformer; 
B) Swin Transformer; C) Projected transformer 

The Swin Transformer block [43] served as inspiration for 

the dual convolutional (D.C.) transformer block, which aims 

to capture features at various scales while also expanding the 

receptive field of the suggested method. To improve the 

convolutional operation of the attention mechanism for 

medical picture segmentation, a revised parallel convolutional 

attention mechanism was made to work with self-attention. 

With this method, data may be gathered in both the channel 

and spatial dimensions at the same time. Using the CBAM 

[44] method, we first produce features throughout the spatial 

dimension as input. 𝑍𝑙−1 ∈ 𝑅
𝐻

4
 × 

𝑊

4
 ×𝐶

. The data is then sent 

across an interconnected system. Following careful 

consideration of the spatial and channel dimensions, the 

following is the result. 

𝑍 = 𝑍𝑙−1⨂𝜎 (𝑀𝐿𝑃(𝑍𝑚𝑎𝑥
𝑙−1 ) + 𝑀𝐿𝑃(𝑍𝑎𝑣𝑔

𝑙−1 )) (5) 

Υ = Υ𝑙⨂𝜎 (𝑀𝐿𝑃(Υ𝑚𝑎𝑥
𝑙 )𝑀𝐿𝑃(Υ𝑎𝑣𝑔

𝑙 ))  (6) 

The notation max signifies the extreme pooling operation, 

avg the average pooling process, and s the sigmoid function. 

When it comes to processing local information like texture and 

details, smaller convolutional kernels (f(33)) are preferable, 

whereas bigger convolutional kernels (f(77)) are preferable 

when dealing with global features like shape and contour. 

Convolutional kernels of varying sizes allow for improved 

capture of multi-scale information. The following are the 

formulas needed to calculate the convolution: 

𝑍𝑐3
𝑙 = 𝑍⨂𝜎 (𝑓3×3([𝑍𝑚𝑎𝑥; 𝑍𝑎𝑣𝑔]))   (7) 

𝑍𝑐7
𝑙 = 𝑍⨂𝜎 (𝑓7×7([𝑍𝑚𝑎𝑥; 𝑍𝑎𝑣𝑔]))   (8) 

Υ𝑐3
𝑙+1 = Υ⨂𝜎 (𝑓3×3([Υ𝑚𝑎𝑥 ; Υ𝑎𝑣𝑔]))   (9) 

Υ𝑐7
𝑙+1 = Υ⨂𝜎 (𝑓7×7([Υ𝑚𝑎𝑥 ; Υ𝑎𝑣𝑔]))   (10) 

We also make extensive use of two mechanisms for multi-

head attention: Relevant linkages between local regions can be 

developed using the W-MSA technique. For feature 

modelling, it partitions the input data into M M windows. 

Tokens are used to efficiently collect hidden details across 

several areas and include fine-grained internal characteristics. 

I stand in for the sample interval in the LD-MSA process. 

Unsampled sections of the picture were subjected to masking 

resulting in 
𝐻

𝐼
×  

𝐻

𝐼
 groups. Feature within each group to obtain 

𝐻

𝐼
×  

𝐻

𝐼
 feature maps. On the other hand, the W-MSA technique 

establishes interdependence by sampling nearby picture 

blocks. The final feature representation is derived from a 

combination of the two systems' outputs. Here's how you can 

figure out your W-MSA and LD-MSA: 

ℎ𝑒𝑎𝑑 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑
+ 𝐵) 𝑉 

  (11) 

𝑊 − 𝑀𝑆𝐴 𝑜𝑟 𝐿𝐷 − 𝑀𝑆𝐴(𝑄, 𝐾, 𝑉) =
𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, … . , ℎ𝑒𝑎𝑑𝑛)𝑊𝑂    (12) 

where 𝑊𝑂 represents the matrix, Q characterizes the query, 

K characterizes the key, V represents the value, and B involves 

W-MSA and LD-MSA. 

The standard 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) uses a matrix of queries, 

keys, and values to perform operations. However, there is no 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3330436

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



 

10 
 

denying the self-attention mechanism's flaws when it comes to 

modelling immediate dependence. We use the W-MSA to 

consolidate the affiliations as a solution to this problem. The 

W-MSA may be determined using the following formula 

when using the window-partitioning method: 

�̂�𝑙 = 𝑊 − 𝑀𝑆𝐴(𝐿𝑁(𝑍𝑙−1)) + 𝑍𝑙−1   (13) 

𝑍𝑙 = 𝑀𝐿𝑃 (𝐿𝑁(�̂�𝑙)) + �̂�𝑙    (14) 

where �̂�𝑙  is for the lth layer's multilayer perceptron (MLP) 

output, while Zl stands for the lth layer's weighted mean 

squared error (W-MSA) output. The LD-MSA technique was 

developed with the transformer's cross-scale attention 

mechanism [45] in mind, allowing it to effectively capture the 

associated properties among various tokens. In order to 

facilitate self-attention within the acquired groups and 

enhance the interaction among the info elements in each 

window, the LD-MSA maps along a certain length and 

breadth. Here's how we may characterize the LD-MSA: 

Υ̂𝑙+1 = 𝐿𝐷 − 𝑀𝑆𝐴(𝐿𝑁(Υ𝑙)) + Υ𝑙    (15) 

Υ𝑙+1 = 𝑀𝐿𝑃 (𝐿𝑁(Υ̂𝑙+1)) + Υ̂𝑙+1   (16) 

where Υ̂𝑙+1 denotes the output consequences the (l + 1)-th 

layer, while Υ𝑙+1 denotes the output MLP of the (l + 1)-th 

layer. Lastly, Υ𝑙  characterizes the D.C. transformer block, 

while 𝑍l+1 indicates the output of the block. 

Υ𝑙 = 𝑍𝑐3
𝑙 + 𝑍𝑐7

𝑙 + 𝑍𝑙    (17) 

𝑍𝑙+1 = Υ𝑐3
𝑙+1 + Υ𝑐7

𝑙+1 + Υ𝑙+1   (18) 

3) CONTOUR DETECTION MODULE 

An integral part of our suggested design is the contour 

discovery component. The module's goal is to maximize the 

model's interpretability and boost the efficiency of medical 

picture segmentation through the use of contour 

information included in the images. The model is given 

more reference information to improve segmentation 

accuracy, and the contour detection module is built to keep 

track of all contours (both internal and exterior). Our 

method is able to successfully acquire and utilize more 

detailed contour information than conventional 

segmentation methods that simply focus on outward 

contours. This improves the model's ability to comprehend 

medical picture limits and structure, which in turn yields 

more precise segmentation outcomes. The "find Contours" 

function, a variation of the Suzuki-Beck technique, is used 

in the OpenCV module of Python to recognize the items in 

a medical picture. 

First, the image is processed to get rid of the testing couch 

or whatever else could be in the way. If there is no such 

disruption, you can skip this procedure. After that, we identify 

and extract the contoured features. In order to successfully 

extract contour information from pictures while keeping local 

features intact, CV methods are needed to complete the 

detection process, otherwise known as contour detection. 

Tasks requiring processing benefit greatly from both the 

contoured and local features. Downsampling is then used in 

the contour detection module to provide consistent sizing 

across all channels. 

4) HYPER-PARAMETER TUNING PROCESS 

The vast majority of researchers recommended using 

optimisation techniques to determine the best scaling 

factor. In particular, in recent years, the NIO algorithms 

have been proposed, such as the evolutionary algorithms 

ABC, grasshopper, bat, and firefly. However, it is also 

important for NIO to strike a balance between exploratory 

and exploitative search behaviours. Our suggested method 

uses a modified version of the grasshopper-BAT (G-BAT) 

optimization algorithm to strike a balance between 

exploratory and exploitative search styles. 

The grasshopper optimisation (G.O.) algorithm is a quick 

and simple NIO technique that draws inspiration from the 

swarm intelligence of actual grasshoppers [46]. By not 

becoming stranded in local optima, G.O. maintains a healthy 

balance between exploration and exploitation in its search 

behaviour. Grasshoppers may get to their safe zones more 

quickly, but the swarm doesn't converge on a central node. 

Thus, the search is inaccurate, and it happens too soon. The 

suggested method combines the G.O. algorithm with the BAT 

algorithm to fix the flaws of the G.O. algorithm and its 

accuracy. Similarly, to NIO [47], BAT is a swarm intelligence 

optimization technique. The BAT algorithm is one of a kind 

because it strikes a balance between exploratory and 

exploitative behaviours and has the benefit of enabling 

automated switching between exploration and exploitation to 

obtain the ideal solution, as opposed to relying on the fixed 

and predefined algorithmic dependent limits utilized by many 

NIO procedures. The primary parameters for optimizing the 

hybrid G-BAT are shown in Table II [48]. 
TABLE II 

LIST OF BASIC LIMITS FOR HYBRID G-BAT 

Parameter  Initial Value 

Freq-min  0 

Maximum Number of iterations 

(MNI)  

30 

Swarm size (S.Z.)  25 

Swarm_minval (min)  0.001 

Swarm cohort  SP = min + (rand(SZ,1) 
Termination disorder  MNI 

Loudness (l)  1 
Pulse rate (r0)  1 

C. CLASSIFICATION METHODOLOGY 

In this section, the study introduces the three mechanisms 

of CAMNet in detail: the coordination attention mechanism 

(CAM) and the linear unit. This is likely an acronym or 

shorthand for the name of the specific model or system used 

for classification. It could represent a combination of 

initials or words related to the model's design or purpose. 

 

Classification of Diabetic Retinopathy: This part of the 

description indicates the main task that the model is 

designed for, which is the classification of diabetic 

retinopathy. Diabetic retinopathy is a medical condition 

affecting the eyes of individuals with diabetes. 
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n the relevant section of your manuscript, clearly define the 

different severity levels within your diabetic retinopathy 

classification system. For example: 

 

    Level 0: No diabetic retinopathy (DR) features observed. 

    Level 1: Mild non-proliferative DR (NPDR) with 

[specific features]. 

    Level 2: Moderate NPDR with the presence of any 

hemorrhages. 

    [Additional severity levels as applicable]. 

1) OVERALL FRAMEWORK OF CAMNET 

In the case of a segmented picture, Z = X + Y, where X is 

the collection of image pixels and Y is the collection of 

labels associated with those pixels. Processing and filling 

the input picture pixel by pixel yields N cubes of size S.R. 

(HWL), which are used for learning edge features. Cube 

space size (H, W) and number of spectral bands (L) are 

shown below. The three primary components of the 

intended CAMNet are as follows: At first, a convolution 

module is used to get the picture from the input. Second, a 

coordinated attention method is developed to completely 

take into account the space and spectrum of the input 

picture. Following feature extraction, a linear module is 

developed in the spirit of the ghost module to extract 

complex characteristics with more precision. The layer is 

used to produce the final classification results. After that, 

we'll go over CAMNet's overall design and the principles 

behind each individual module. 

2) CAM 

Convolutional neural networks (CNNs) can improve their 

feature discrimination and picture classification abilities by 

employing an attention mechanism. The key to improved 

classification, however, lies in feature extraction, namely 

in the efficient extraction of spatial and spectral dimension 

data. As a result, we suggest a technique for coordinated 

attention to be employed in investigating the feature-

distance connection. The spatial and spectral attention 

masks are obtained by the process in accordance with the 

long-distance connection. 

There are two components to the CAM: spectral attention 

and spatial coordination. In order to better discern between 

spectral bands and achieve more precise spatial correlations, 

backdrops. The formula for 𝐹𝑜𝑢𝑡, if FR(HWL) is fed into 

CAM, goes as follows: 

𝐹𝑜𝑢𝑡 = 𝐹. 𝑀𝐻(𝐹). 𝑀𝑊(𝐹). 𝑀𝐿(𝐹)   (19) 

where F and 𝐹𝑜𝑢𝑡 characterize the input and output of CAM 

correspondingly. 𝑀𝑊 . 𝐻. (·) characterizes the attention map in 

direction H, and the output scope is 𝐻 ×  1 ×  1. 𝑀𝑊. 𝑊. (·) 

characterizes the attention map in direction W, and the output 

scope is 1 ×  𝑊 ×  1. Similarly, 𝑀𝐿(·) signifies the attention 

map in direction L, and the output scope is 1 × 1 × L. 𝑀𝐻(·) 

and 𝑀𝑊(·) are obtained by seeing the vertical and info, so as 

dependent information. Exactly, F obtains 𝐹𝐻 ∈ 𝑅𝐻×1×1 in 

the vertical direction and 𝐹𝑊 ∈ 𝑅1×𝑊×1 horizontally through 

a layer of pooling data from all across the world and then 

cascading the findings. The vertical and horizontal long-

distance dependencies are extracted by sending the cascaded 

results to the layer, the batch normalization layer (B.N.), and 

the nonlinear activation layer. The h_swish [49] activation 

function is used in the nonlinear activation layer; it requires 

few parameters but improves neural networks' 

representational power. The h_swish function may be uttered 

as, 

𝑓(𝑥)  =  𝑥 ·  𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑎𝑥)    (20) 

where a is a trainable limit. Lastly, the obtained results are 

unglued and attention map 𝑀𝐻(·) and the horizontal map 

𝑀𝑊(·). 

Likewise, F passes through the layer to get 𝐹𝐿 ∈ 𝑅1×1×𝐿, 

and then the gotten result permits finished the unit the layer to 

find the map 𝑀𝐿(𝐹). The application procedure of CAM is 

exposed in Procedure 1. 

Algorithm 1 Facts of CAM. 

1: 𝐼𝑛𝑝𝑢𝑡: 
2: 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠: 𝐹 ∈ 𝑅𝐻×𝑊×𝐿 . 
3: 𝑂𝑢𝑡𝑝𝑢𝑡: 
4: 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑜𝑓 𝐶𝐴𝑀: 𝐹𝑜𝑢𝑡 ∈ 𝑅𝐻×𝑊×𝐿 . 
5: 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛: 
6: 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑎𝑙𝑙 𝑤𝑒𝑖𝑔ℎ𝑡 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑜𝑓 𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑎𝑙 𝑘𝑒𝑟𝑛𝑒𝑙𝑠. 
7: 𝐹 𝑝𝑎𝑠𝑠𝑒𝑠 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝐿 𝐴𝑣𝑔𝑝𝑜𝑜𝑙, 𝐻 𝐴𝑣𝑔𝑃𝑜𝑜𝑙, 𝑎𝑛𝑑 𝑊 𝐴𝑣𝑔𝑃𝑜𝑜𝑙 𝑙𝑎𝑦𝑒𝑟𝑠 𝑡𝑜 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝐹𝐿

∈ 𝑅1×1×𝐿 , 𝐹𝐻 ∈ 𝑅𝐻×1×1, 𝑎𝑛𝑑 
8: 𝐹𝑊 ∈ 𝑅1×𝑊×1, 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦; 
9: 𝑅𝑒𝑠ℎ𝑎𝑝𝑒 𝑡ℎ𝑒 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝐹 . 𝐻. 𝑡𝑜 1 ×  𝐻 
×  1 𝑎𝑛𝑑 𝑐𝑎𝑠𝑐𝑎𝑑𝑒 𝑤𝑖𝑡ℎ 𝐹 . 𝑊. 𝑡𝑜 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝐹𝐻𝑊; 
10: 𝐶𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑒 𝐹𝐻𝑊 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 3𝐷 𝑢𝑛𝑖𝑡 𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑘𝑒𝑟𝑛𝑒𝑙 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 𝑎: 

11: 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑙𝑎𝑦𝑒𝑟 𝑡𝑜 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝐹𝐻𝑊′; 
12: 𝑆𝑝𝑙𝑖𝑡 𝐹𝐻𝑊′ 𝑎𝑛𝑑 𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑒 𝑡ℎ𝑒 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 𝑤𝑖𝑡ℎ 𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑘𝑒𝑟𝑛𝑒𝑙 𝑡𝑜 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝐹 . 𝐻. ′ 𝑎𝑛𝑑 𝐹. 𝑊. ′; 
13: 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 𝐹 . 𝐻. ′ 𝑎𝑛𝑑 𝐹 . 𝑊. ′ 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑡𝑜 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑡ℎ𝑒 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑀 . 𝐻. (𝐹)
∈ 𝑅𝐻×1×1 𝑎𝑛𝑑 
14: 𝑀𝑊(𝐹) ∈ 𝑅1×𝑊×1; 
15: 𝐶𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑒 𝐹𝐿 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑘𝑒𝑟𝑛𝑒𝑙 𝑡𝑜 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝐹 . 𝐿. ′; 
16: 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 𝐹𝐿′ 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑡𝑜 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑡ℎ𝑒 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑀𝐿(𝐹)
∈ 𝑅1×1×𝐿; 

17: 𝐹𝑖𝑛𝑎𝑙𝑙𝑦, 𝑡ℎ𝑒 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑀𝐻(𝐹)
∈ 𝑅𝐻×1×1, 𝑀𝑊(𝐹) ∈ 𝑅1×𝑊×1, 𝑎𝑛𝑑 𝑀𝐿(𝐹)
∈ 𝑅1×1×𝐿 𝑎𝑟𝑒 𝑎𝑑𝑑𝑒𝑑 𝑡𝑜 𝑡ℎ𝑒 𝑖𝑛𝑝𝑢𝑡 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝐹 𝑡𝑜 

18: 𝑜𝑏𝑡𝑎𝑖𝑛 𝐹𝑜𝑢𝑡 ∈ 𝑅𝐻×𝑊×𝐿. 

3) CONVOLUTION MODULE 

In terms of feature extraction, CNNs are quite capable. In 

particular, CNN's convolution and pooling procedures may 

be used to extract more nuanced insights from raw data. In 

order to prevent any loss of information, a CNN may be 

used to segment pictures to maintain the correlation 

between data pixels. Additionally, DR classification is still 

centred on the efficient extraction of spatial and spectral 

information from input pictures. 

In this research, we present a space-spectrum convolution 

block for efficient extraction of spatial-spectral characteristics. 

Based on how Inception V3 [49] used a smaller convolution 

kernel to learn spatial-spectral characteristics, the convolution 
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layer also uses this kernel to lower the parameters. Figure 7 

depicts the internal construction of the convolution module. 

 

FIGURE 7. Convolution unit construction diagram 

As can be seen from Figure 7, input 𝑋i entails the size of 

𝑛 × 𝑛 × 𝑏. 𝑋o is convolution, which can be spoken as, 

𝑋0 = 𝐹(𝑋𝑖)     (21) 

In which F() is a composite nonlinear function. A three-

layer neural network with convolution, batch normalization 

(B.N.), and a recurrent linear unit (ReLU) as its activation 

function. In the convolutional layer, the convolution kernel 

size is 1 1 3. With the ReLU function, nonlinear relationships 

between layers of a neural network may be strengthened, 

allowing the network to do its complicated duties. 

𝑔𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒(𝑥) = {
𝑥     𝑜𝑡ℎ𝑒𝑟𝑠
0        𝑥 ≤ 0

   (22) 

where x characterizes 𝑔𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒(𝑥) symbolically stands for 

the nonlinear activation functions. In addition, a ReLU to 

normalize the data, which helps with the dispersion issue and 

speeds up the convergence time. Here is the formula for 

normalization: 

�̂�(𝑖) =
𝑥(𝑖)−𝐸[𝑥(𝑖)]

√𝑉𝑎𝑟[𝑥(𝑖)]

     (23) 

where 𝐸[𝑥(𝑖)] characterizes the regular of each neuron, and 

√𝑉𝑎𝑟[𝑥(𝑖)] represents the typical nonconformity of the input 

rate of each neuron. 

4) LINEAR MODULE 

The best way to boost classification performance in the DR 

classification assignment is to extract as much feature 

information as feasible. The ghost module [50] served as 

inspiration for the linear module used in this paper. Based 

on the features provided by the combined CAM and 

convolution modules, the linear module creates a more 

detailed feature map. Figure 8 depicts the linear module's 

internal construction. To generate the output 𝑦𝑜, we first 

linearly convolve the input 𝑦𝑖  to produce 𝑦𝑚, and then we 

cascade the feature map 𝑦𝑚 with the input 𝑦𝑖 . The following 

expression defines the linear convolution output 𝑦𝑚.: 

𝑦𝑚 = 𝜑(𝑦𝑖) = 𝑣𝑖,𝑗
𝑥,𝑦,𝑧

    (24) 

𝑣𝑖,𝑗
𝑥,𝑦,𝑧

=

∑ ∑ ∑ ∑ 𝐾𝑖,𝑗,𝐶
𝛼,𝛽,𝛾,

. 𝑣(𝑖−1),𝐶

(𝑥+𝛼),(𝑦+𝛽),(𝑧+𝛾)
+ 𝑏𝑖,𝑗

𝑙𝑖−1
𝛾=0

𝑤𝑖−1
𝛽=0

ℎ𝑖−1
𝑎=0𝐶  (25) 

where 𝜑(·) is a function, 𝑣𝑖,𝑗
𝑥,𝑦,𝑧

 characterizes the neuron at 

the site (x, y, z) of the j-th map on the i-th layer, ℎ𝑖 , 𝑤𝑖, and 𝑙i 

characterize the dimension, correspondingly, and 𝐶 is the 

index of (𝑖 −  1) map. In totalling, 𝐾𝑖,𝑗,𝐶
𝛼,𝛽,𝛾,

 characterizes the j-

th kernel on (a, b, g) at the C-th map position of layer i. 

𝑣(𝑖−1),𝐶

(𝑥+𝛼),(𝑦+𝛽),(𝑧+𝛾)
 characterizes the value of the neuron at 

(𝑥 +  𝑎, 𝑦 +  𝑏, 𝑧 +  𝑔) of layer (i − 1), and 𝑏i,j is the 

partiality term. 

 

FIGURE 8. Construction diagram of linear unit 

5) HYPER-PARAMETER TUNING PROCESS 

The proposed classifier is tuned using RHSO (Rock Hyrax 

Swarm Optimisation), a meta-heuristic motivated by the 

social behaviour of rock hyraxes. The RHSO algorithm 

represents the collective foraging strategy and point of view 

of rock hyraxes. Rock hyraxes live in colonies or groups, 

each of which is overseen by a dominant male. The 

algorithm looks for the best options by integrating local 

heuristics with historical data to determine which attributes 

will be the most useful in the categorization process [51]. 

All of the data is split into a training set and a testing set, as 

shown in Figure 9 of the RHSO's working model. The ideal 

features are found by feeding the training data (i.e., f(x)) into 

the optimization process. A classification model's efficacy 

may be evaluated by providing it with a training set, an 

evaluation set, and a feature subset (i.e., f(x)). Equation (26) 

might be used as a metaphor for the procedure of selecting the 

most desirable features. Equation (27) improves the accuracy 

of classification using the aforementioned features by 

reducing the error with each repetition. 

 

FIGURE 9. Feature Selection Replicas Block Diagram 

The size of the population, the number of generations, 

starting social scaling factors, mutation rates, and crossover 

rates are all variables that may be tweaked to influence the 

outcome of a population-based algorithm. The optimization 
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algorithm may get stuck in a local optimum stage with 

inappropriate parameter values, which would increase the 

computational cost of the optimization algorithm problem, and 

thus the performance of the optimization method. These 

problems can be solved by employing the RHOSFS technique. 

In order to streamline the classification process, this strategy 

allows for the selection of the most relevant input features. 

This section elaborates on the RHOSFS technique. 

A random population must be generated, selected, and 

analyzed before the total number of F.S. input characteristics 

can be calculated. Make it such that each group of features 

stands in for a different slice of the input population. The goal 

of this research is to identify the set of input qualities that, 

taken together, have the dual effect of reducing the model's 

fitness and increasing its accuracy. 

𝑒𝑟𝑟(𝑥𝑖) = 𝑎𝑐𝑡𝑢𝑎𝑙_𝑜𝑢𝑡𝑝𝑢𝑡(𝑥𝑖) −
𝑚𝑜𝑑𝑒𝑙_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑_𝑜𝑢𝑡𝑝𝑢𝑡(𝑥𝑖) (26) 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥) =
∑ 𝑒𝑟𝑟(𝑥)𝑛

𝑥=0

𝑛
   (27) 

𝑙𝑒𝑎𝑑𝑒𝑟 = 𝑟1 × 𝑥(𝑙𝑒𝑎𝑑𝑒𝑟𝑝𝑜𝑠, 𝑗)   (28) 

where r1 is a random integer in the range [0, 1], x is the 

leader's prior position, leader_pos is the leader's old position, 

and j means "each reduction." Each member updates its 

position using Equation (29) once the leader's position has 

been modified. 

𝑥(𝑖, 𝑗) = (𝑥(𝑖, 𝑗) − (𝑐𝑖𝑟𝑐 × 𝑥(𝑖, 𝑗) + 𝑙𝑒𝑎𝑑𝑒𝑟))  (29) 

To try to reproduce the circle system in Equation (30), 

where circ signifies circular motion, the following calculation 

is made: 

𝑐𝑖𝑟𝑐 = 𝑠𝑞𝑟𝑡(𝑛1
2 + 𝑛2

2)    (30) 

𝑛1 = 𝑟2 × cos (𝑎𝑛𝑔)    (31) 

𝑛2 = 𝑟2 × sin (𝑎𝑛𝑔)    (32) 

In Eqs. (31) and (32), where radius is a chance number 

among [0, 1], and ang is the angle of a motion and is a random 

number between [0, 360], respectively. The lower and upper 

bands of the random number generator (lb and up, 

respectively) are used to inform an update to the range that 

occurs with each generation. 

𝑑𝑎𝑙𝑡𝑎 =  𝑟𝑎𝑛𝑑𝑜𝑚[𝑙𝑏, 𝑢𝑏]    (33) 

𝑎𝑛𝑔 =  𝑎𝑛𝑔 +  𝑑𝑎𝑙𝑡𝑎     (34) 

If the output goes beyond the specified range (greater than 

360 or less than 0), the angle (ang) can be changed to 360 or 

0. Only those people whose new fitness value are higher than 

or equal to their old value are selected, and their novel fitness 

rate is inverted. Only the least fit individuals are passed on to 

the following generation. At last, the algorithm decides which 

candidates is the best fit. 

V. EXPERIMENTATION, RESULTS AND DISCUSSION 

A. SETUP FOR IMPLEMENTATION 

PyTorch (https://pytorch.org/), a universal Python library, 

was used to create the suggested architecture and conduct 

the experiments. This research's tests, including the training 

of the models, were conducted on an outfitted with an Intel 

Xeon E5-2620 CPU running at 2.4 GHz and three NVIDIA 

GPUs, each with 12 GB. of RAM. 

B. PARAMETERS EVALUATION 

Automatic identification of retinal images for early-stage 

diabetic retinopathy using the fundus camera needs basic 

preprocessing steps before image distribution steps can be 

made. The retinal fundus picture collection is preprocessed 

using a combination of different techniques, including 

contrast adjustment, standard strain, and adaptive sifting. 

The accuracy of the algorithmic method for describing the 

retina was evaluated by computing the PSNR. The PSNR 

has a logarithmic value in decibels. When compared to the 

original image, the modified version has a higher advanced 

PSNR value. 

Disease-related statistics and non-disease-related statistics 

are the two main types of statistics in healthcare. Evaluations 

of comprehension and detail help determine the level of 

correctness of actions. Digital fundus pictures for DR are 

created by a computation of each image's empathy, and the 

area of medicine studies the importance of sensitivity in this 

context. Based on fundus images, the true identifies the pixels 

that contain lesions, whereas the true reveals the non-lesion 

pixels. In contrast, a false negative (F.N.) represents lesion 

pixels that were overlooked by the implies number of non-

lesion pixels that were incorrectly followed by guidelines [52]. 

Area was used to assess the efficacy of the suggested 

approach. 

C. VALIDATION ANALYSIS OF PROPOSED 
SEGMENTATION RESULTS 

The proposed segmentation perfect is validated on three 

datasets, and its values are given in Tables III, IV and V. 
 
 

 

 
 

 

 
TABLE III 

CONSEQUENCES OF SEGMENTATION TECHNIQUE USING E-OPHTHA-EX 

DATASETS 

Lesions mIoU mDice F1-Score Precision (P) Recall 
Accuracy (Acc) 

EX 0.94 0.97 0.98 0.94 0.99 0.96 

Table III above represents the consequences of the 

segmentation technique using e-aphtha-EX datasets. In the 

analysis of the consequences of the segmentation technique, 

the mIoU is 0.94 and the mDice is 0.97, and the F1-Score 

value is 0.98, the precision degree is 0.94, the recall rate is 

0.99, and finally, the accuracy rate is 0.96, respectively 
TABLE IV 

CONSEQUENCES OF SEGMENTATION TECHNIQUE USING DIARETDB1 

DATASETS 
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Lesions mDice F1-Score Precision (P) mIoU Recall Accuracy (Acc) 

SE 0.88 0.87 0.86 0.86 1.00 0.86 

HM 0.83 0.72 0.87 0.87 0.99 0.87 

HE 0.83 0.92 0.71 0.71 0.99 0.71 

MA 0.83 0.72 0.87 0.87 0.99 0.87 

The consequences of the segmentation technique using 

DIARETDB1 datasets are shown in Table IV above. The 

experimental evaluation of the H.M. model yielded the 

following results: mIoU rate of 0.87, mice degree of 0.83, F1-

Score range of 0.72, precision range of 0.87, recall rate of 0.99, 

and accuracy rate of 0.87, respectively. The mIoU rate was 

0.71, the mDice rate was 0.83, the F1-Score range was 0.92, 

the recall rate was 0.99, and the accuracy rate was 0.71 after 

the HE models reached those values, respectively. The MA 

model then achieved the following values: mIoU rate of 0.87, 

mDice rate of 0.83, F1-Score range of 0.72, precision range of 

0.87, recall rate of 0.99, and accuracy rate of 0.87, 

respectively. Following the S.E. model's achievement of the 

mIoU rate of 0.86, the mDice rate of 0.88, the F1-Score range 

of 0.87, the precision range of 0.86, the recall rate of 1.00, and 

finally the accuracy rate of 0.86, respectively. 

The consequences of the segmentation technique using 

IDRiD datasets are indicated in Table V above. The mIoU 

rate, mDice rate, F1-Score range, precision range, recall rate, 

and accuracy rate for the H.M. model were all reached at 0.86, 

0.88, 0.86, and 1.00, respectively, in the assessment metrics. 

The mIoU rate, mDice rate, F1-Score range, precision range, 

recall rate, and accuracy rate were all reached by the HE 

models at respective values of 0.88, 0.84, 0.88, 1.00, and 0.88, 

respectively. Following the M.A. model, the following values 

were obtained: mIoU rate of 0.71, mDice rate of 0.83, 

precision range of 0.71, recall proportion of 1.00, and accuracy 

rate of 0.71, respectively. The O.D. model then reached the 

following values: mIoU rate of 0.86, mDice rate of 0.87, F1-

Score range of 0.87, precision range of 0.86, recall rate of 1.00, 

and accuracy rate of 0.86, respectively. The S.E. model then 

achieved a mIoU rate of 0.84, a precision range of 0.87, a 

recall rate of 0.98, and an accuracy rate of 0.97, respectively. 
TABLE V 

CONSEQUENCES OF SEGMENTATION TECHNIQUE USING IDRID DATASETS 

Lesions 
Accuracy 

(Acc) 
mDice 

F1-

Score 

mIoU 
Precision (P) Recall 

OD 0.86 0.87 0.87 0.86 0.86 1.00 

HM 0.86 0.88 0.88 0.86 0.86 1.00 

HE 0.88 0.84 0.81 0.88 0.88 1.00 

MA 0.71 0.83 0.92 0.71 0.71 1.00 

SE 0.97 0.83 0.82 0.84 0.87 0.98 

D. VALIDATION ANALYSIS OF PROPOSED 
CLASSIFIER 

Tables VI to VIII present the analysis of the proposed 

classifier with existing models on three datasets. The 

existing models, such as Capsule Network [23], CNN [24], 

and SqueezeNet [25], DenseNet [29], EfficientNet [35], 

SbCNF [37], and AlexNet+GoogleNet with the SVM [36] 

use various datasets for DR. Hence, comparative 

techniques are implemented in our research data, and the 

results are averaged. 
TABLE VI 

RESULTS OF CLASSIFIER METHOD USING E-OPHTHA-EX DATASETS 

Model Sensitivity Precision Specificity F1-Score Accuracy AUC 

SqueezeNet 0.9694 0.9744 0.969 0.9710 0.9792 0.9798 

DenseNet 0.9475 0.945 0.9622 0.9339 0.9615 0.9825 

EfficientNet 0.9308 0.9375 0.9439 0.9254 0.9570 0.9748 

CAM-RHSO 0.9801 0.9915 0.9715 0.9869 0.989 0.9905 

The results of the classifier method using the e-ophtha-EX 

datasets are shown in Table VI above. In the analysis of the 

SqueezeNet model, the accuracy rate, sensitivity rate, 

precision rate, specificity rate, F1-score rate, and AUC rate 

were all determined to be 0.9792, 0.9694, 0.9744, 0.9710, and 

0.9798, respectively. The DenseNet model then achieved 

accuracy rates of 0.9615, sensitivity rates of 0.9475, precision 

rates of 0.945, specificity rates of 0.9622, F1-score rates of 

0.9339, and finally, AUC rates of 0.9815. The EfficientNet 

model then obtained accuracy rates of 0.9570, sensitivity rates 

of 0.9308, precision rates of 0.9375, specificity rates of 

0.9439, F1-score rates of 0.9254, and finally AUC rates of 

0.9748. The CAM-RHSO model then achieved an accuracy 

rate of 0.989, a sensitivity rate of 0.9801, a precision rate of 

0.9915, a specificity rate of 0.9715, an F1-score rate of 0.9869, 

and finally an AUC rate of 0.9905, in that order. 
TABLE VII 

RESULTS OF CLASSIFIER METHOD USING DIARETDB1 DATASETS 

Model Sensitivity Precision Specificity F1-Score Accuracy AUC 

SqueezeNet 0.9481 0.9512 0.9435 0.9299 0.9459 0.959 

DenseNet 0.943 0.923 0.9266 0.903 0.9375 0.964 

EfficientNet 0.9305 0.92 0.9234 0.9181 0.9315 0.961 

CAM-

RHSO 

0.953 0.9715 0.987 0.965 0.96 0.98 

The results of the classifier method using the DIARETDB1 

datasets are shown in Table VII above. According to the 

analysis of the SqueezeNet model, the accuracy rate was 

0.9459, the sensitivity rate was 0.9481, the precision rate was 

0.9512, the specificity rate was 0.9435, the F1-score rate was 

0.9299, and the AUC rate was 0.969. Next, the DenseNet 

model achieved accuracy rates of 0.9375, sensitivity rates of 

0.943, precision rates of 0.923, specificity rates of 0.9266, F1-

score rates of 0.903, and finally, AUC rates of 0.964. The 

EfficientNet model then achieved an accuracy rate of 0.9315, 

a sensitivity rate of 0.9305, a precision rate of 0.92, a 

specificity rate of 0.9234, an F1-score rate of 0.9181, and 

finally an AUC rate of 0.961, all in accordance with the data. 

The CAM-RHSO model then achieved respective accuracy 

rates of 0.96, sensitivity rates of 0.953, precision rates of 
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0.9715, specificity rates of 0.987, F1-score rates of 0.965, and 

AUC rates of 0.98. 
TABLE VIII 

RESULTS OF CLASSIFIER METHOD USING IDRID DATASETS 

Model Precisi

on 

Specificity Sensitivi

ty 

F1-

Score 

AUC Accurac

y 

SqueezeNe

t 

0.9232 0.9099 0.9312 0.9122 0.949 0.9352 

DenseNet 0.9225 0.9222 0.9074 0.917 0.947 0.9205 

EfficientN

et 

0.9175 0.919 0.9008 0.91 0.944 0.913 

CAM-

RHSO 

0.954 0.9796 0.9638 0.942 0.965 0.9750 

The results of the classifier method using the DIARETDB1 

datasets are shown in Table VIII above. The SqueezeNet 

model's evaluation resulted in accuracy rates of 0.9352, 

sensitivity rates of 0.9312, precision rates of 0.9232, 

specificity rates of 0.9099, F1-score rates of 0.9122, and 

finally, AUC rates of 0.949. The DenseNet perfect then 

achieved respective accuracy rates of 0.9205, sensitivity rates 

of 0.9074, precision rates of 0.9225, specificity rates of 

0.9222, F1-score rates of 0.917, and AUC rates of 0.947. The 

EfficientNet perfect then achieved accuracy rates of 0.913, 

sensitivity rates of 0.9008, precision rates of 0.9175, 

specificity rates of 0.919, and finally AUC rates of 0.944. 

Next, the CAM-RHSO model achieved accuracy rates of 

0.9750, sensitivity rates of 0.9638, precision rates of 0.954, 

specificity rates of 0.9796, F1-score rates of 0.942, and finally, 

AUC rates of 0.965. 

 

FIGURE 10. Analysis of various models 

 

FIGURE 11. Graphical representation of the proposed model 
with existing models 

The validation analysis of the proposed classifier for the 

entire dataset is shown in Table IX above. In the analysis of 

the Capsule Network [23] approach, the first-class accuracy 

was 94.12, the precision rate was 0.94, the recall degree was 

0.86, and the F1-score was finally 0.90. The second-class 

accuracy was 95.34, the recall rate was 0.95, and the F1-score 

was finally 0.91. The first-class accuracy was 89.04, the 

precision proportion was 0.61, the recall rate was 0.87, and the 

F1-score was finally 0. Approaching the first class accuracy of 

95.80, the precision rate of 0.96, the recall rate of 0.90, and the 

F1-score of 0.93, respectively, the fourth class accuracy of 

95.67, the precision rate of 0.96, the recall rate of 0.88, and the 

F1-score of 0.92, respectively, the first class accuracy of 

90.94, the precision rate of 0.67, the recall rate of 0.91, and the 

F1-score of 0.77, respectively, and finally 

the AlexNet+GoogleNet with SVM [36] approach the 1st 

class accuracy of 96.75 and the precision rate as 0.99 and also 

the recall degree as 0.91 and finally the F1-score as 0.95 

respectively then the 3rd class accuracy of 95.56 and the 

precision rate as 0.84 and also the recall frequency as 0.99 and 

finally the F1-score as 0.90 respectively then the 1st class 

accuracy of 96.53 and the precision rate as 0.94 and also the 

recall rate as 0.91 and finally the F1-score as 0.93 respectively 

then the 4th class accuracy of 98.48 and the precision rate as 

0.98 and also the recall rate as 0.96 and finally the F1-score as 

0.97 SbCNF [37] approach the 1st class accuracy of 86.57 and 

the precision rate as 1.00 and also the recall rate as 0.68 and 

finally the F1-score as 0.81 respectively then the 1st class 

accuracy of 97.08 and the precision rate as 0.94 and also the 

recall proportion as 0.94 and finally the F1-score as 0.94 

respectively then the 1st class accuracy of 3 87.77 and the 

precision degree as 0.47 and also the recall rate as 1.00 and 

finally the F1-score as 0.64 respectively then the 1st class 

accuracy of 98.32 0.94 and also the recall rate as 0.99 0.96 

respectively. Finally, using our suggested methodology, the 

first-class accuracy was 98.72 percent, the F1 score was 0.96, 

and the precision rate was 0.98 percent. The second-class 

accuracy was 99.75 percent, the precision rate was 1.00 
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percent, the recall rate was 0.99 out of a hundred, and the F1 

score was 0.99 percent. The third-class accuracy was 98.09 

percent, the precision degree was 0.93 percent, the recall rate 

was 0.99 percent, and the F1 score was 0.96 percent. 

 

FIGURE 12. Comparative Analysis based on F1-score and AUC 

TABLE IX 

VALIDATION ANALYSIS OF PROPOSED CLASSIFIER FOR WHOLE DATASET 

Classifier Classe

s 

Accurac

y 

Precisio

n 

Recal

l 

F1 

Scor
e 

Capsule Network 

[23] 

1 94.12 0.94 0.86 0.90 

2 95.34 0.95 0.88 0.91 

3 89.04 0.61 0.87 0.72 
4 96.16 0.96 0.89 0.92 

CNN [24] 1 95.80 0.96 0.90 0.93 

2 95.67 0.96 0.88 0.92 
3 90.94 0.67 0.91 0.77 

4 96.38 0.96 0.91 0.93 
AlexNet+GoogleN

et with SVM [36] 

1 96.75 0.99 0.91 0.95 

2 95.56 0.84 0.99 0.90 

3 96.53 0.94 0.91 0.93 
4 98.48 0.98 0.96 0.97 

SbCNF [37] 1 86.57 1.00 0.68 0.81 

2 97.08 0.94 0.94 0.94 
3 87.77 0.47 1.00 0.64 

4 98.32 0.94 0.99 0.96 

Proposed 1 98.72 0.99 0.96 0.98 

2 99.75 1.00 0.99 0.99 

3 98.09 0.93 0.99 0.96 

4 99.40 0.99 0.98 0.99 

VI. CONCLUSION AND FUTURE SCOPE 

Diabetic retinopathy therapy relies heavily on early diagnosis. 

The pace of this procedure is keeping pace with the 

development of relevant technologies. The severity of the 

fundus pictures was classified using A.I. models in this study. 

The research suggests an innovative two-stage DR detection 

approach, with the first stage including OD and BV 

segmentation and the second stage involving DR 

categorization using transfer learning. During preprocessing, 

we extracted the green channel, resized everything uniformly, 

applied a top-bottom hat transformation, and segmented the 

OD and BV. Next, publicly accessible datasets are used to 

train CAMNet for DR-perfect. These datasets are Messidor-2 

and DIARETDB0. Results from the evaluation of the 

projected model on the dataset show promising clinical 

relevance. The experimental research demonstrates that the 

suggested perfect outperformed state-of-the-art 

representations by a wide margin, with an accuracy of 96% to 

98% across three datasets. The study indicated that the 

classification accuracy of proliferative DR pictures was 

enhanced by adding data from automated image segmentation. 

Other imaging problems, especially those with sparse training 

data, might benefit from this method of segmentation-assisted 

classification. The potential for the employment of many 

algorithms to complement each other to enhance all sorts of 

deep learning issues justifies further investigation beyond 

imaging. Explore opportunities for fine-tuning and optimizing 

the IC2T model and the Rock Hyrax Swarm-Based 

Coordination Attention Mechanism. Investigate different 

hyperparameters, architectures, or training strategies to 

improve performance further. 
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